Agenda

Green Transportation Infrastructure Workshop North Central Texas Council of Governments August 24, 2021 | Zoom Meeting

9:30 AM Welcome and Workshop Introduction Shawn Conrad, Principal Transportation Planner, NCTCOG Sydnee Steelman, Transportation Planner, NCTCOG

9:35 AM - OVERVIEW OF GREEN INFRASTRUCTURE RESOURCES

11:05 AM

Resources and Opportunities

Economic and Environmental Benefits of Stewardship Tool Kate Zielke, Principal Transportation Planner, NCTCOG

<u>RISE Coalition</u> Tamara Cook, Senior Program Manager, NCTCOG

<u>Transportation integrated Stormwater Management (TriSWM)</u> Tamara Cook, Senior Program Manager, NCTCOG

Overview of the EPA Green Infrastructure Program and Available Resources

Brent Larsen, Section Chief, US EPA Region 6 Nelly Smith, State and Tribal Programs Chief, US EPA Region 6

Session Q&A

11:05 AM – LOCAL EXAMPLES AND IMPLEMENTATION STRATEGIES

12:00 PM

Drainage and Stormwater

<u>Bioswales: City of Lewisville Old Town Project</u> Sagar Medisetty, Traffic Engineer, City of Lewisville

Rain Gardens: City of Dallas Beckley/Commerce St intersection Green Street Project Don Raines, Senior Planner, City of Dallas

Rain Gardens: Elm Street Streetscape Improvements Christina Turner-Noteware, City Engineer, City of Dallas

Session Q&A

12:00 PM – Lunch

1:00 PM

1:00 PM – LOCAL EXAMPLES AND IMPLEMENTATION STRATEGIES (Cont.)

2:25 PM

Pavements and Surfaces

<u>Silva Cells: Sundance Square Plaza in Fort Worth and San Jacinto Plaza, Rockwall</u> Brenda Guglielmina, Account Manager, DeepRoot Consulting

<u>Permeable Pavements: The Green at College Park, Arlington</u> David Hopman, Associate Professor at the University of Texas at Arlington

Lighting

<u>LED Lighting: City of Arlington LED Streetlights Conversion</u> Oscar Valle, Public Works Operations Supervisor, City of Arlington

<u>Solar Lighting: Bus Shelter Solar Lighting, Trinity Metro</u> Sandip Sen, Service Implementation Manager, Trinity Metro

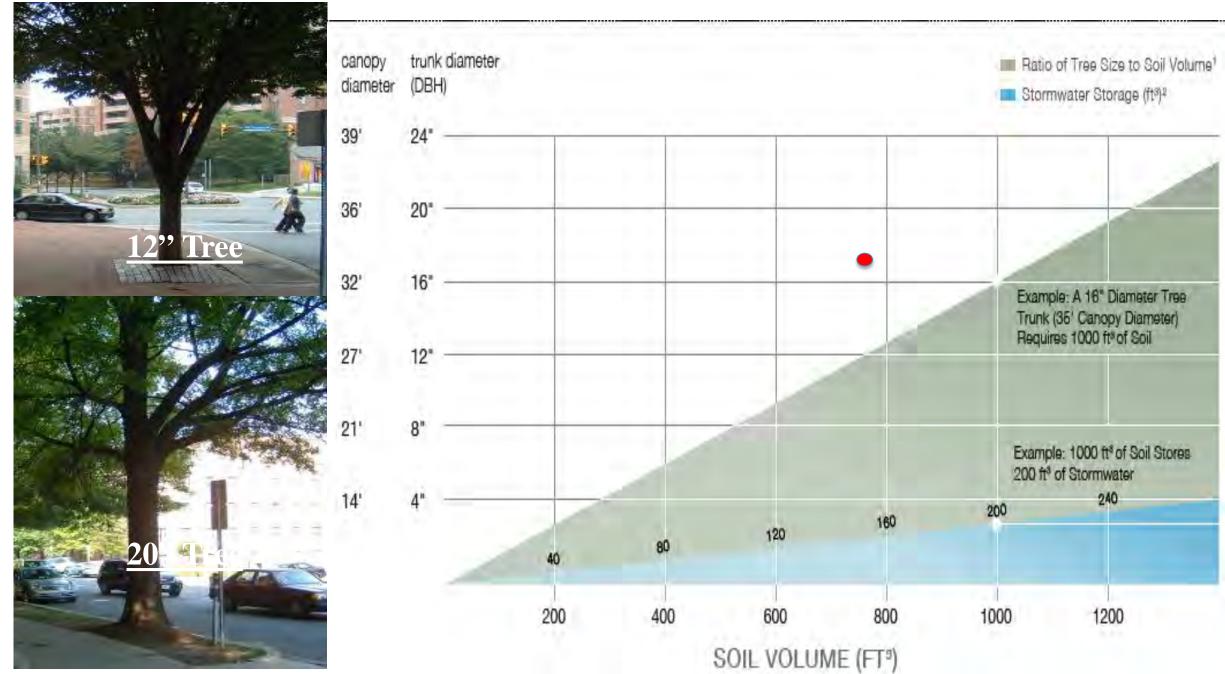
Session Q&A

2:25 PM – CLOSING

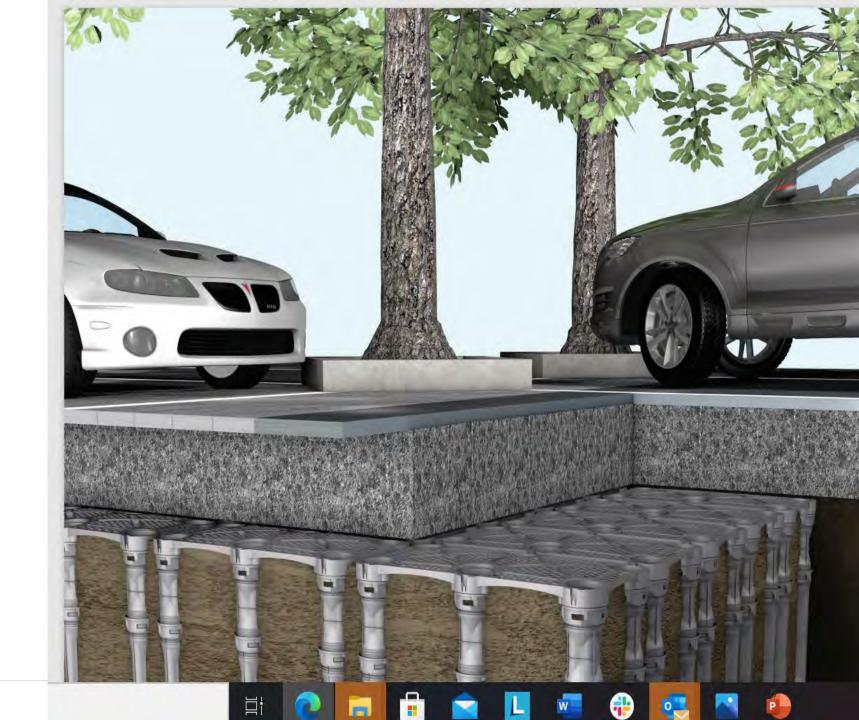
2:30 PM

Wrap-Up/Final Thoughts

NCTCOG Green Transportation Infrastructure



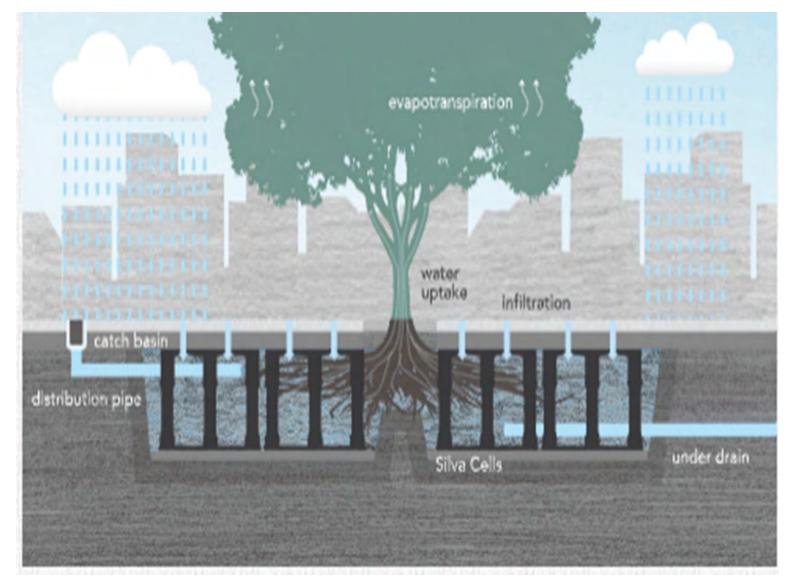
<u>Silva Cell 2-</u> <u>3 Heights for Design Flexibility</u>



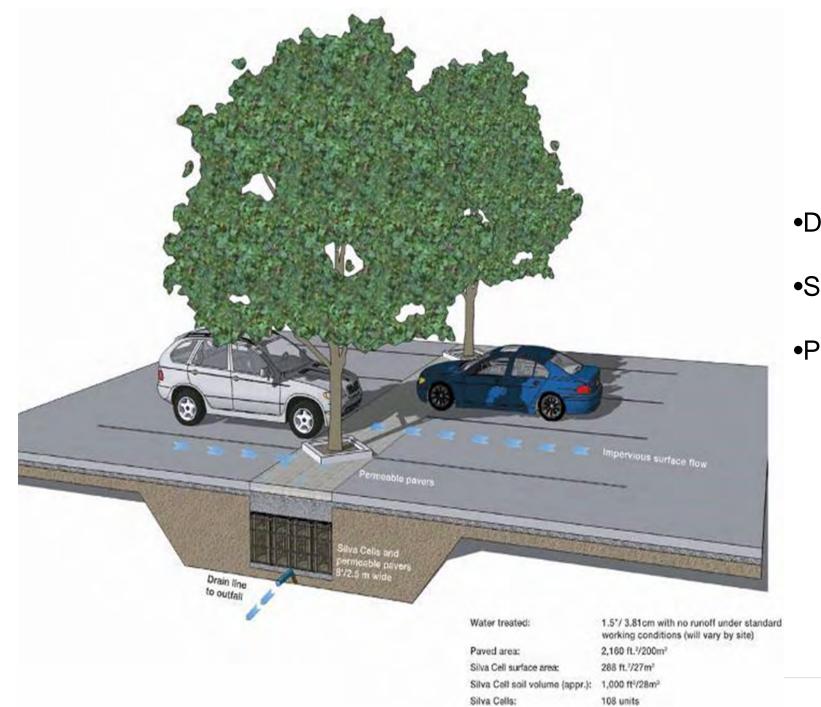
Designed for Vehicular Loading

HS20 Load Rating

Parking Bays Plazas Parking Lots On-Structure Sidewalks Bike Lanes



Traditional Bio Swale


Uses a lot of land
Collect garbage
High Maintenance cost
TSS is managed on top of the soil

육 deeproot

- Take up no space
- •Doesn't collect garbage
- •0 Maintenance cost
- •TTS and heavy metals treated under the pavement

•Do not lose Parking Spaces

•Shade for every car

•Passive Irrigation for the Trees

Silva Cell 1 Installation

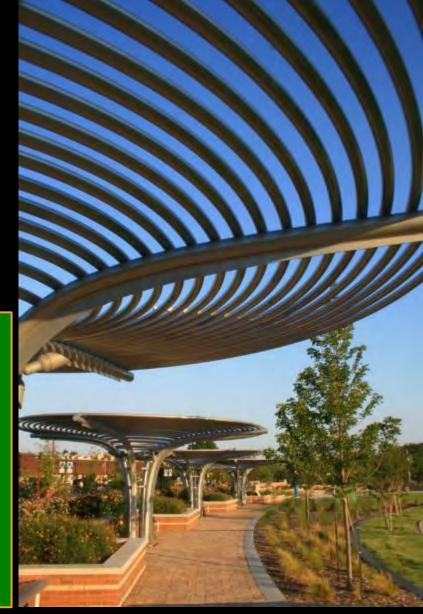
This is our 2 stack system with water line

DeepRoot Green Infrastructure LLC

- Brenda Guglielmina
- <u>Brenda@deeproot.com</u>
- <u>www.deeproot.com</u>

Thank You!!!!

The Green at College Park- University of Texas, Arlington NCTCOG Green Infrastructure Workshop



SUSTAINABLE SITES INITIATIVE™

David Hopman, ASLA – The University of Texas at Arlington, Landscape Architecture Program dhopman@uta.edu

Location: Arlington, Texas

- Size: 2.6 acres / 112,820 ft2
- **Type:** Educational / Institutional
- Team: Schrickel, Rollins and Associates(now Parkhill) The University of Texas at Arlington, NCTCOG

College Park District

College Park District

(THE SUSTAINABLE SITES INITIATIVE™ 6 1144G SPECIAL EVENT CENTER ARCHITECT HKS, INC. TRACINE HILL 111 (111 121 111 THE OWNER OF THE GREEN AT COLLEGE PARK RIL GARDEN TEXAS ARLINGTON STUTH CLUTER STRUCT Schrickel, Rollins and Associates, Inc.

Sustainability Features

The 2.6 Acre combined site was developed

to:

- Create a native/adapted garden,
- Predominately function as a sustainable rain garden system.
- Use plants native to North Central Texas in the waterways, selected because of their ability to thrive in drought / flood conditions.

Sustainability Features

The site's other Sustainability features include

- reducing use of potable water,
- designing rainwater/stormwater features to provide landscape amenity,
- using native/adapted plants,
- reducing urban heat island effects,
- using recycled and regional material;
- design for human health and wellbeing; and,
- promoting sustainability awareness and education.

January 2012

SUSTAINABLE SITES INITIATIVE™

HEREBY CERTIFIES

THE GREEN AT COLLEGE PARK ARLINGTON, TEXAS

HAS SUCCESSFULLY MET THE SUSTAINABLE SITES INITIATIVE CRITERIA REQUIRED UNDER THE SUSTAINABLE SITES INITIATIVE: GUIDELINES AND PERFORMANCE BENCHMARKS 2009 TO EARN A ONE STAR CERTIFICATION RATING.

SITES CERTIFIED

Vana Somen

Nancy C. Somervie. Executive Director; American Society of Landscape Architects

Susan Rieff, Executive Director, Lady Bird Johnson Wildflower Center at The University of Texas at Austin

THE SUSTAINABLE SITES INITIATIVE™

Structure of the Prerequisites and Credits:

1. Site Context

- 3. Site Design-Water
- 4. Site Design- Soil and Vegetation
- 5. Site Design- Materials and Selection
- Site Design- Human Health and Well-Being
- 7. Construction
- 8. Operations and Maintenance
- 9. Education and Performance Monitoring

10. Innovation or Exemplary Performance

November 2019

DEVELOPMENT ISSUES THAT INCREASE IMPERVIOUS COVER

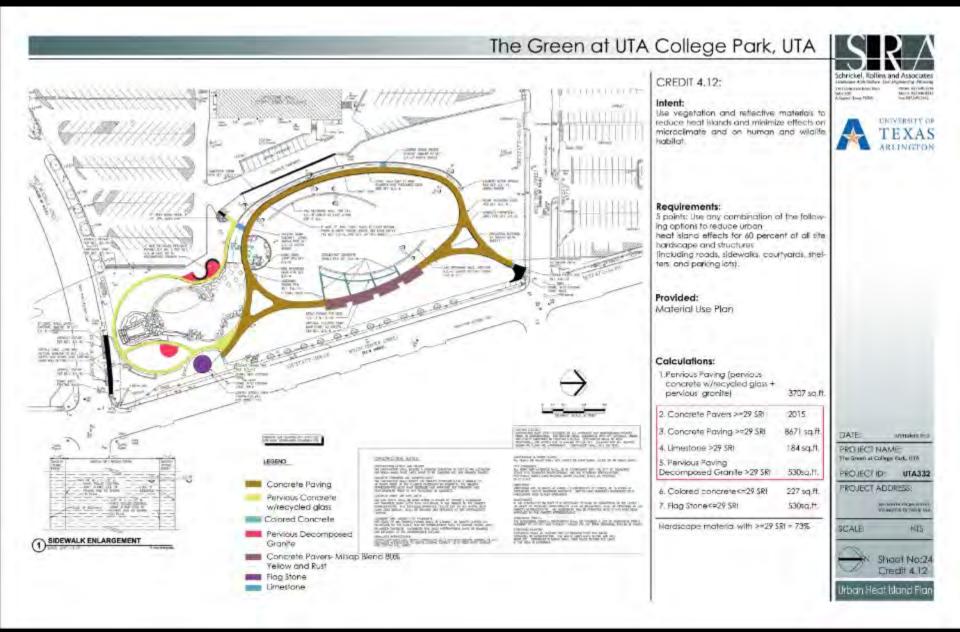
- REMOVAL OF TREE CANOPY COVER
- REMOVAL OF GROUND COVER VEGETATION
- REMOVAL OF PERMEABLE TOP SOIL
- Severe compaction and paving of remaining soil
- Underground Pipe and Sewer infrastructures

Source: Elena Berg, Planner

College Park District site in 2007

College Park District site in 2016

Biomass Density Calculations From the Sustainable Sites Initiative


CREDIT4.6: Preserve and restore appropriate biomass on site

EXISTING SITE BDI								
	113400							
Land Cover/vegetation type zones	Biomass density index for Arlington, TX		Percentage of total site area for this zone	Biomass density value x percentage of total site area				
Trees with understory	6	580	0.01	0.03				
Trees without understory (less than 10% herbaceous shrub cover)	4	0	0.00	0.00				
Shrubs	3	0	0,00	0.00				
Desert Plants	1.5	0	0.00	0.00				
Annual plantings	1,5	0	0.00	0.00				
Grasslands and turf grass	2	40220	0.35	0.71				
Wetlands	6	0	0.00	0.00				
Impervious cover or bare ground not shaded by vegetation structures	O	72600	0.64	0.00				
SUBTOTAL		113400	1.00	0.74				
				0				
Exi	sting site BDI (Bio Mass I	Density)		0.74				

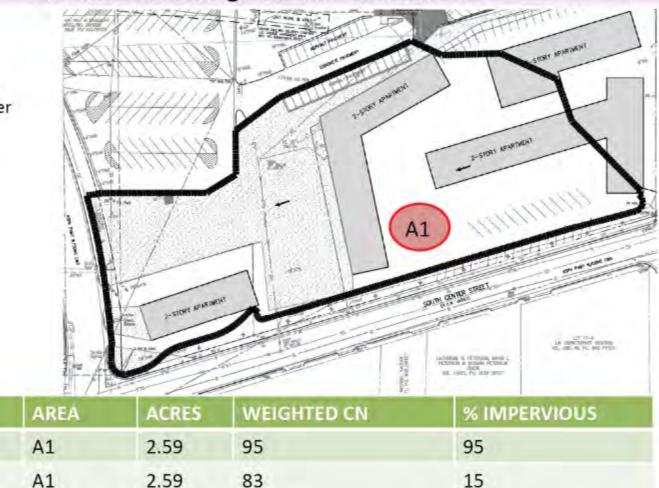
Biomass Density Calculations From the Sustainable Sites Initiative

		113400		
Land Cover/vegetation type zones	Biomass density index for Arlington, TX	Area in square feet	Percentage of total site	Biomass density value x percentage of total site area
Trees with understory	6	31800	0.28	1.68
Trees without understory (less than 10% herbaceous shrub cover)	4	4302	0.04	0.15
Shrubs	3	3741	0.03	0.10
Desert Plants	1.5	0	0.00	0.00
Annual plantings	1.5	0	0.00	0.00
Grasslands and turf grass	2	44049	0.39	0.78
Wetlands	6	13104	0.12	0.69
Impervious cover or bare ground not shaded by vegetation structures	0	16404	0.14	0.00
SUBTOTAL		113400	1.00	3.40
ADDITIONAL VALUE for horizontal or vertical surfaces covered with vegetation				(

POINT LOOK UP TABLE FOR TEMPERATE GRASSLANDS, SAVANNAS AND SHRUBLANDS (DFW AREA)							
Existing Site BDI	Planned Site BDI						
	0-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0 and above		
0-0.5	No credit	3 POINTS	5POINTS	8 POINTS	8 POINTS		
0.5-1.0	No credit	No credit	3 POINTS	5POINTS	8 POINTS		
1.0-1.5	No credit	No credit	No credit	3 POINTS	8 POINTS		
1.5-2.0	No credit	No credit	No credit	No credit	8 POINTS		
2.0 and above	No credit	No credit	No credit	No credit	8 POINTS		

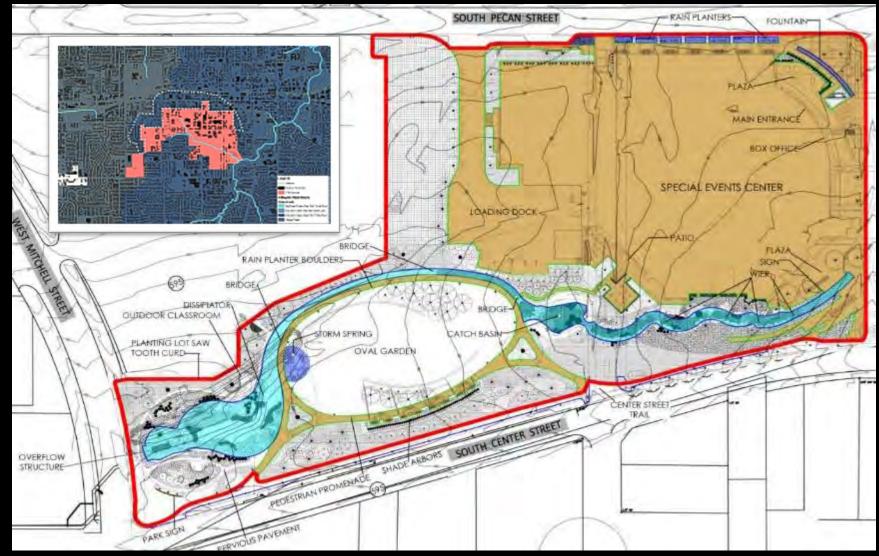
Credit 3.5: Manage stormwater on site

GOALS:


Achieve 60 percent improvement in water storage capacity. (Brownfield)

Target CN = 83

CONDITIONS


Existing

Target

Existing Impervious Curve Number (water storage capacity) = 98; Open CN= 80

The Green at College Park, University of Texas at Arlington

WATER WISE A GREEN SOLUTION TO WATER POLLUTION

ADDITIONAL INFORMATION:

- College Park Center Drainage consists of surface runoff, storm water from roof drains and condensate from the airconditioning system.
- The Rain Channel is conveyance system that consists of a porous soil structure protected by a layer of rock mulch. This channel increases infiltration of runoff into the soil and filters total suspended solids.
- The Storm Spring relieves pressure from the underground campus storm drainage system. During large storm events, it functions as a reverse inlet, allowing storm drainage from underground pipes to overflow into the oval lawn area for detention.
- The Detention Lawn temporarily holds water during large storm events and gradually allows it to drain into the Rill Garden.
- The Rill Garden is a complex system of vegetation that thrives in drought and flood conditions. Below the surfacelayer of rock mulch is a porous soil structure that increases infiltration. The soil system, rock mulch and vegetation work together to remove pollutants from storm run-off. This garden replaces an eroded drainage channel that existed on the site.
- The Check Dam helps to filter storm water and encourages infiltration by reducing velocity and increasing the amount of time storm water is detained on site.
- G The Overflow Structure controls the amount of water that leaves the garden and drains to Johnson Creek. The controlled release also alleviates flooding of adjacent streets.
- The Biofilter is a vegetated system that removes total suspended solids from parking lot run-off before eventually draining into the rill garden.
- The **Microdepressions** are shallow depressions in the landscape that are sculpted to retain irrigation and storm runoff. Below the depressions are large rock sumps that store water and release it into the soil to be used by surrounding vegetation. Planted in the shallow areas are native plants that grow in wet soil conditions.

The Green at College Park, University of Texas at Arlington

TENTER STREET

Credit 3.5: Manage stormwater on site

CONDITIONS	AREA	ACRES	WEIGHTED CN	% IMPERVIOUS
Existing	A1	2.59	95	95
Proposed	A1	2.59	83	15

Impervious CN= 98; Open CN= 80

Image Source: Parkhill

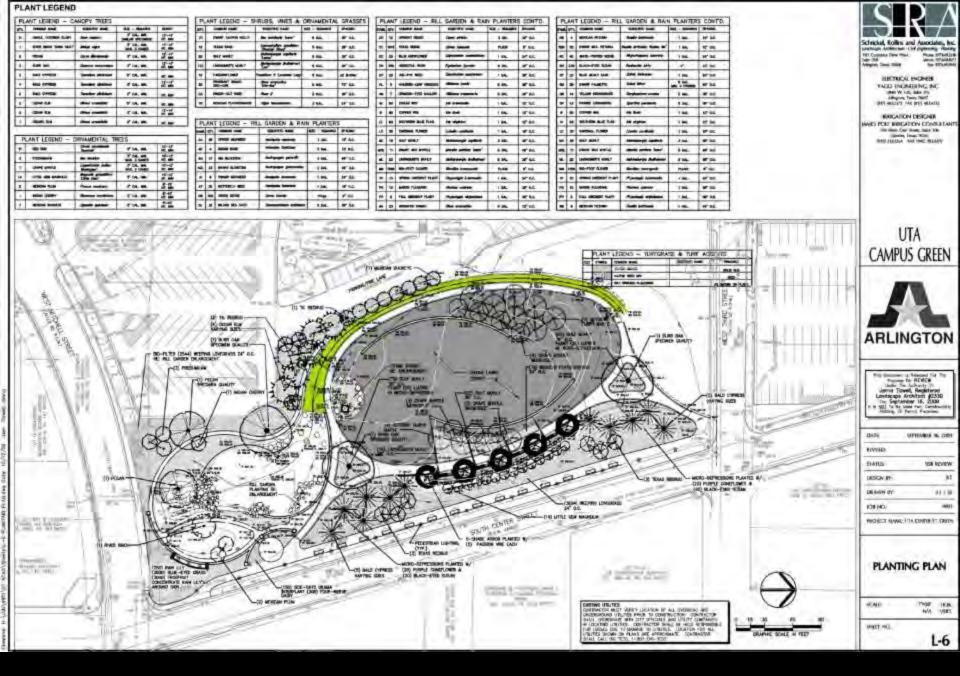
Credit 3.5: Manage stormwater on site

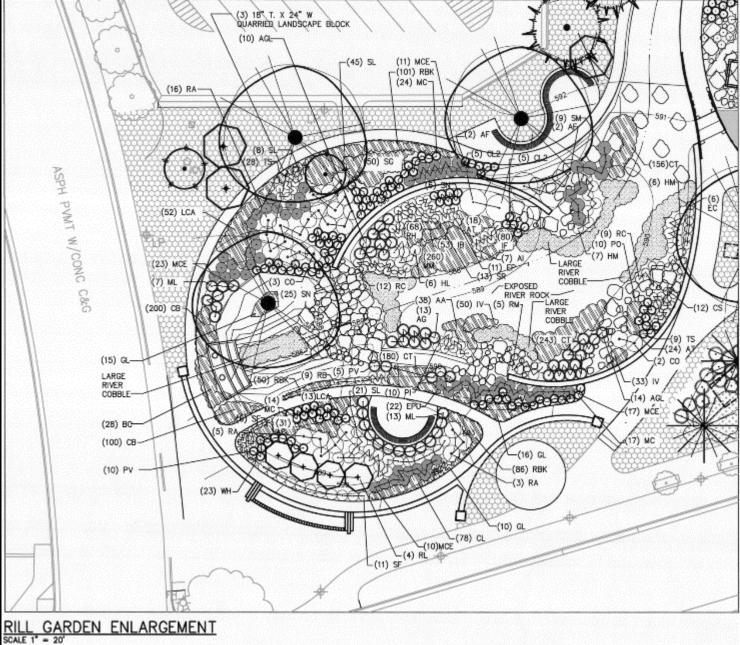
CONDITIONS	AREA	ACRES	WEIGHTED CN	% IMPERVIOUS
Existing	A1	2.59	95	95
Proposed	A1	2.59	83	15

Impervious CN= 98; Open CN= 80

The Green at College Park, University of Texas at Arlington

The Green at College Park, University of Texas at Arlington





PLA	NT LEGEND - S	HRUBS, VINES &	ORNAMENTA	L GRASSES
QTY.	COMMON NAME	SCIENTIFIC NAME	SIZE - REMARKS	SPACING
70	DWARF YAUPON HOLLY	llex vomitoria 'nana'	5 GAL	36" 0.C.
19	TEXAS SAGE	Leucaphyllum candidum 'Thunder Cloud'	5 GAL	36° 0.C.
52	GULF MUHLY	Muhlenbergia capillaris Lenca'	5 GAL	36° 0.C.
123	LINDHEIMER'S MUHLY	Muhlenbergia lindheimeri Zeni'	5 GAL	36° 0.C.
15	PASSIONFLOWER	Passiflora X Lavender Lady	5 GAL	AS SHOWN
20	FRAGRANT SUMAC GRO-LOW	Rhus aromatica 'Gro-low'	5 GAL.	72" 0.C.
33	KNOCK-OUT ROSE	Rosa X	5 GAL	36° 0.C.
78	MEDICAN FEATHERGRASS	Stipa tennulaimma	3 GAL	24" 0.C.

SYMB.	QTY.	COMMON NAME	SCIENTIFIC NAME	SIZE - REMARKS	SPACING
*	38	SPIDER MILKWEED	Asclepias asperula	1 GAL	15" 0.0.
AF	4	INDIGO BUSH	Amorpha fruticosa	8 GAL	10' 0.C.
AG	17	BIG BLUESTEM	Andropogon gerardit	5 GAL	48° 0.C.
AGL	33	BUSHY BLUESTEM	Andropogon glomeratus	5 GAL	48° 0.C.
A	9	SWAMP MILKWEED	Asciepias incornata	1 GAL	24" 0.0
AT	30	BUTTERFLY WEED	Asciepias tuberosa	1 GAL	18° 0.C.
68	300	CREEK SEDGE	Canex blanda	Pluge	6° 0.C.
đ	21	INLAND SEA OATS	Chasmanthium latifalium	5 GAL	36° 0.C.

-		COMMON NAME	SCIENTIFIC NAME	SIZE - REMARKS	SPACING
SYMB.	QTY.	COMMON NAME	SOLEN IFIC HAME	SIZE - NEWAVAS	arnung
cs	12	UPRICHT SEDGE	Carex stricta	3 GAL	36" 0.C.
ст	1616	TEXAS SEDGE	Carex texensis	PLUGS	6° 0.C.
EC	25	BLUE MISTFLOWER	Eupatorium co eles tinum	1 GAL	24" 0.C.
ы	356	HORSETAIL RUSH	Equisetum hymale	5 GAL	36" 0.C.
Ð	25	JOE-PYE WEED	Eupatorium purpursum	1 GAL	36" 0.C.
HL	6	HALBERD-LEAF HIBISCUS	Hiblacus Ioevis	5 GAL	36" 0.C.
HM	7	CRIMSON-EYED MALLOW	Hibiscus moscheuto	5 GAL	36" 0.C.
B	50	ZIGZAG IRIS	Iris brevicaulis	1 GAL	12" 0.C.
F	80	COPPER IRIS	iris fuvia	1 GAL	12" 0.C.
N	83	SOUTHERN BLUE FLAG	iris virginica	1 GAL	12" 0.C.
2	30	CARDINAL FLOWER	Lobelia cardinalis	1 GAL	18" 0.C.
MC	78	GULF MUHLY	Muhianbargia capiliaris	3 GAL	36" 0.C.
MCE	71	DWARF WAX MYRTLE	Morella centiera 'nana'	5 GAL	48" 0.C.
ML	22	LINDHEIMER'S MUHLY	Muhlanbergia lindheimeri	5 GAL	36" 0.C.
E	1558	BIG-FOOT CLOVER	Marsilea macropoda	PLUGS	6° 0.C.
PI	15	SPRING OBEDIENT PLANT	Physotegia Intermedia	1 GAL	24" 0.C.
PO	10	MARSH FLEABANE	Pluchea odorata	1 GAL	36" 0.C.
PV	5	FALL OBEDIENT PLANT	Physiologia virgininiana	1 GAL	36" 0.C.
RA	23	AROMATIC SUMAC	Rhus aromatica	5 GAL	72" 0.C.

looking North from Marine Creek Parkway

2007: from google maps

looking North from Marine Creek Parkway

2012: from google maps

looking North from Marine Creek Parkway

2015: from google maps

looking North from Marine Creek Parkway

2021: by David Hopman

The Green at College Park-Summer 2021

SUSTAINABLE SITES

The Green at College Park- University of Texas, Arlington NCTCOG Green Infrastructure Workshop

Questions/Comments?

SUSTAINABLE SITES INITIATIVE™

David Hopman, ASLA – The University of Texas at Arlington, Landscape Architecture Program dhopman@uta.edu

Location: Arlington, Texas

- Size: 2.6 acres / 112,820 ft2
- **Type:** Educational / Institutional
- Team: Schrickel, Rollins and Associates(now Parkhill) The University of Texas at Arlington. NCTCOG

LED STREETLIGHT CONVERSION PROJECT

Oscar Valle Traffic Operations Supervisor

Department of Public Works & Transportation


City of Arlington, Texas

5,223 Streetlights out of a total of approximately 23K streetlights Citywide remain to be converted to LED

PROJECT SCOPE

5164 Residential Streetlights
14 Canopy Lights
45 Antique Lights

9/10/2021 C

Total cost to complete LED streetlight conversion \$2,464,000 with City crews

Received Arlington Tomorrow Fund Grant in February 2020 for Phase I

) City of Arlington, Texas

PROJECT PHASING

Phase I – 2500 Fixtures

IH-20/Cooper – High Masts with 66 fixtures
 Estimated completion in Sept. 2020

IH-20/SH360 High Masts with 18 fixtures
 Estimated completion in Oct. 2020

IH-30 High Masts with 216 fixtures
 Estimated completion in April 2021

• All Residential areas between Park Row Drive and the northern City Limits, including the UTA area, with 2200 fixtures.

• Estimated completion in April 2021

9/10/2021 (

PROJECT PHASING

Phase II – Approximately 3500 fixtures in FY21
 Between Park Row Drive and Arbrook Blvd.

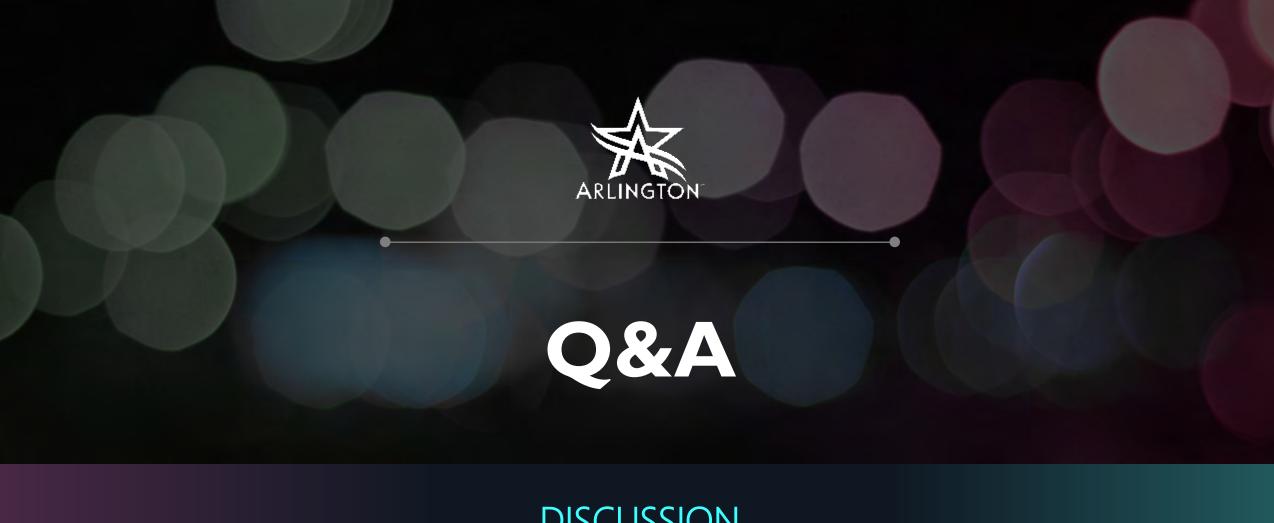
Phase III – Approximately 1400 fixtures in FY22
 Between Pleasant Ridge Road and Sublett Road

Phase IV – Approximately 1297 fixtures in FY23
 Between Sublett Road and southern City Limit

ENERGY SAVINGS

100W changed to 55 LED saves about \$1.56 each light per month
100W changed to 94 LED saves about \$0.65 each light per month
150W changed to 100 LED saves about \$2.46 each light per month

LIFE EXPECTANCY OF LED STREETLIGHTS


Life expectancy for LED fixtures are typically 10 years. There is no bulb for LED's, the fixture and diode is one complete item.
Life expectancy for High Pressure Sodium fixtures is only 5 years.
LED fixture warranty is 10 years

REDUCTION OF LIGHT POLLUTION

oLED fixtures create a white light • Provides better visibility • Does not contain toxic chemicals such as mercury • The light pattern is focused on the roadway with less light pollution and improved color rendering.

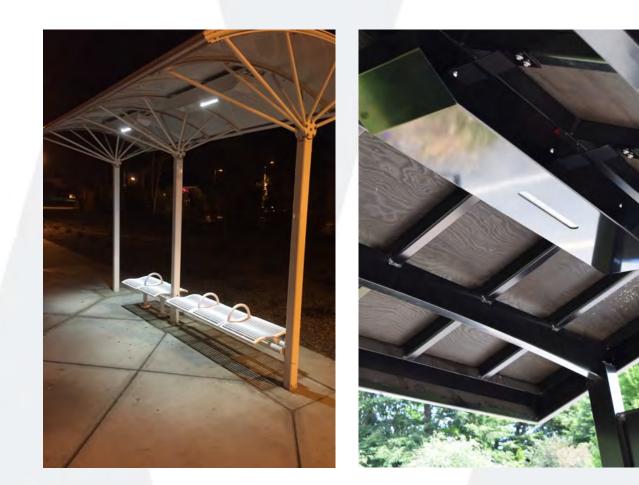
9/10/2021 C

DISCUSSION

City off Anlington, Texas

9/10/2021 🔾

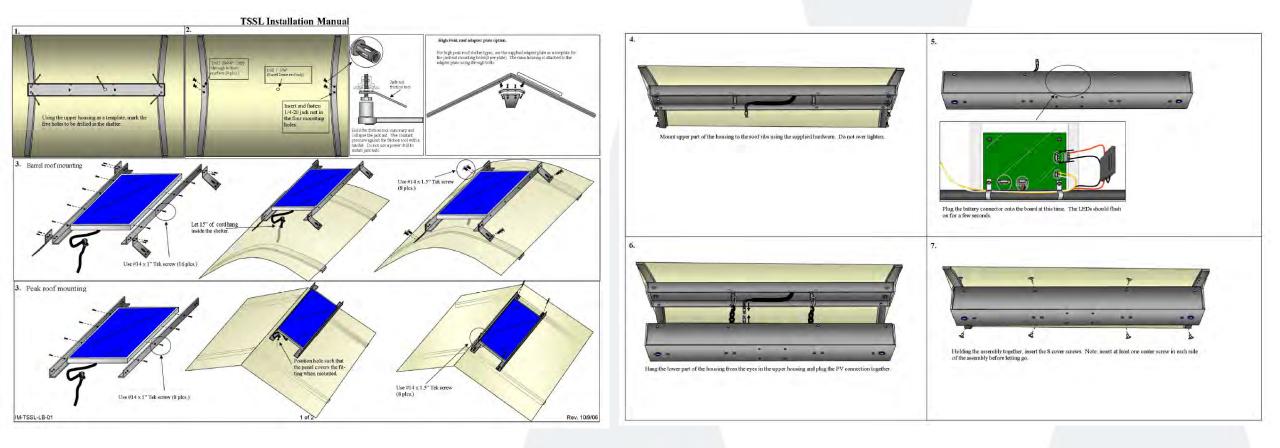
Green Transportation Infrastructure Workshop: Solar Lighting


Sandip Sen Planning Manager – Service Implementation

Shelter Lighting Systems

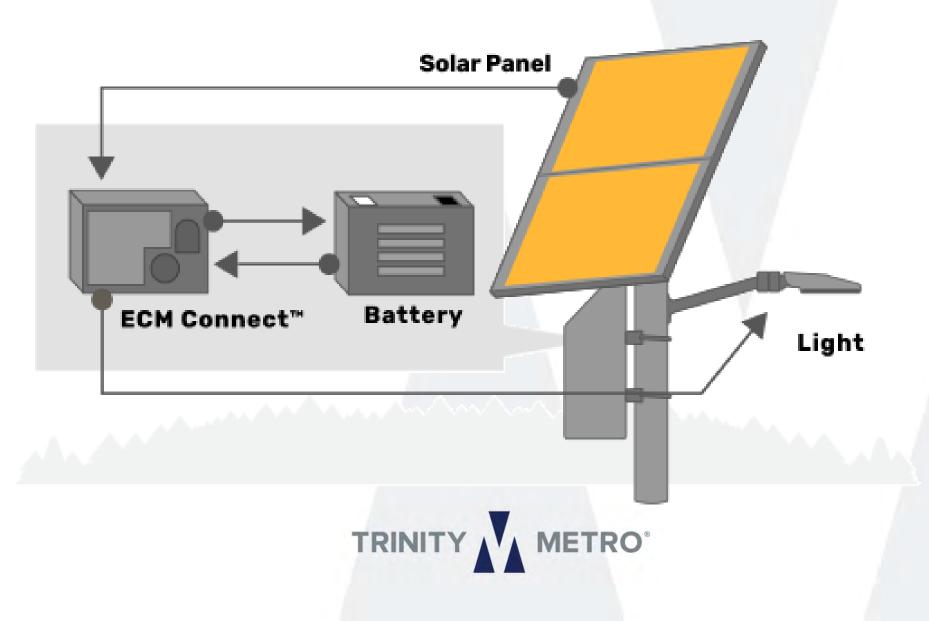
- Off-grid security illumination for every bus shelter
- 80W solar array,
 8W security luminaire
- Optional cellular monitoring and power for digital displays
- UL Listed. Made in the USA.

Why Solar?


For many projects, standalone solar lighting is the ideal option.

- Fast and easy installation
 Low cost and minimal site disruption
- No utility connection required
 Reduced carbon footprint
- Highly visible
 Positions our community as a leader in sustainability
- Long Lasting

Commercial grade solutions that last as long as a bus shelter



Solar Panel Installation

How Solar Lighting Works

Trinity Metro Solar Lighting

- Started installing solar lights in 2010
 (Majority of solar lights installed 2017-2020.)
- 156 standard shelters
- 3 downtown shelters
- New shelters built with solar lights
- Cost savings when done together

Pole-Mounted Lighting Systems

- Easily deployed security lighting and optional digital signage
- Enhance security and reduce pass-bys
- Deploy at any bus stop with a standard transit pole
- UL Listed. Made in the USA.

TRINITY METRO®

Contact Information

Karla Weaver, AICP Senior Program Manager kweaver@nctcog.org Shawn Conrad, PhD Principal Transportation Planner sconrad@nctcog.org

Sydnee Steelman Transportation Planner ssteelman@nctcog.org