2023 Transportation Conformity

Appendix 12.18: MoSERS Methodology and Calculation Descriptions

3.0 IMPROVED PUBLIC TRANSIT -- LIGHT RAIL

	ansion Increase ridership by providing new rail system services Expansion of transit system or service can include the addition of rail services through increased frequency or route extension. Bus or paratransit services can be		Project Year: 2 Project Description:	023	
	expanded with new vehicles and/or route extensions.				
Application:	Large cities or communities with enough population density to support reasonably frequent transit service.		Project Code:		
Variables:		Source		NO _X	voc
EF _B :	Speed-based running exhaust emission factor for affected roadwa before implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehiclles in all roadway types)	ay MOVES3	EF _B :	0.11	0.04
EF _{TV} :	Speed-based running exhaust emission factor for transit vehicle	DART	EF _{TV} :	0.00	0.00
	Percentage of people using a transit vehicle that previously were	MOSERS	F _{T, sov} :	0.40	0.40
1,001	New transit ridership (total ridership)	Project Specific	N _{TR} :	17,490	17,490
TEE .	Auto trip-end emission factor (NOx or VOC) (grams/trip)	MOVES3	TEE .	0.37	0.47
71010	Transit vehicle trip-end emission factor (NOx or VOC) (grams/trip)		TEF _{AUTO} :	0.00	0.47
	Average auto trip length (to work) (miles)	COG Default		13.28	13.28
••			TL _w :		
	Route Length of the Transit Vehicle (miles)	DART	TL _{TV} :	0.00	0.00
	Daily vehicle trips by transit vehicle	DART		0.00	0.00
	Reduction in number of daily automobile vehicle trips		VT _R :	6996.00	6996.00
	Vehicle miles traveled by transit vehicle		VMT _{TV} :	0.00	0.00
	Reduction in daily automobile VMT		VMT _R :	92906.88	92906.88
Conversion Factor:	Convert grams per mile of emissions to pounds per mile of emissions		Conversion Factor:	453.60	453.60
Equation:				NO _X	voc
	Reduction in auto start emissions from trips reduced		А:	2588.52	3288.12
	Reduction in auto running exhaust emissions from VMT reduction	ie.	A. B:	10219.76	3716.28
		15	В. С:	0.00	0.00
	Increase in emissions from additional train starts		D:	0.00	0.00
	Increase in emissions from additional train running exhaust Where,		D.	0.00	0.00
VTp = N_p * F_	Number of new transit riders multiplied by the percentage of riders	s	VT _R :	6996.00	6996.00
,	Number of vehicle trips reduced multiplied by the average auto tri		VMT _R :	92906.88	92906.88
	Number of vehicle trips reduced multiplied by the average transit route length.	٢	VMT _{TV/BUS} :	0.00	0.00
Results:	U			NO _x	voc
Daily Emission Reducti	on = (A + B – C – D) / Conversion Factor	Daily Emission Redu Daily Emission Reduct		<mark>28.24</mark> 0.01	<mark>15.44</mark> 0.01

Part C and Part D are both equal to zero because the DART system utilizes electric light rail, which has zero-emission train equipment. Local assumptions are calculated from the Dallas-Fort Worth Regional Travel Model and professional judgment of the Dallas Area Rapid Transit and North Central Texas Council of Governments staff.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs. Blue - Project Spesific Input

Yellow - Assumptions

4.0 High-Occupancy Vehicle Facilities

4.1 Freeway HO	V Facilities
----------------	--------------

4.1 Freeway HOV Fac	cilities				
Strategy:	Reduction of emissions by decreasing VMT and increased average speeds on the lane.		Project Year: 202	23	
Description:	Separate lanes on controlled access highways are created for vehicles containing a specified number of passengers. The lane may be concurrent flow, barrier/buffer separated, or have a separate right-of-way.		Project Description:		
Application:	Highways in areas of traffic congestion with sufficient available right-of-way.		Project Code:		
MOSERS Formula:	Emission Benefit (lbs/day) =[A + B + C] (grams/day)/CF (grams/lbs)				
	$A=V_{HOV}*(EF_{b}-EF_{a})*L$	Change in running exhau improvement in HOV land		beed	
	B= (V _{GP,B} * EF _b - V _{GP,A} * EF _a) * L "assume negligible"	Change in running exhau lanes as a result of vehic purpose lanes.	•		
	C= VTr (TEFauto + EF b * TLw)	Reduction of emission fro running exhaust) from trip		+ auto	
	VTr = Np * { Ft*Ft,sov + Frs*Frs,sov} * (1-1/AVOrs)}	Reduction in daily automo	obile trips.		
Assumptions:		Source		Defau	lts
AVO _{RS} :	Average vehicle occupancy of rideshare (persons/vehicle)	COG Default	AVO _{RS} :	2.140	2.140
F _{RS} :	Percentage of people attracted to the HOV facility using ride share (decimal)	COG Default	F _{RS} :	0.832	0.832
F _{RS,SOV} :	Percentage of people attracted to the HOV facility using ride share that previously were vehicle drivers (decimal)	COG Default	F _{RS,SOV} :	0.561	0.561
F _T :	Percentage of people attracted to the HOV facility using a transit vehicle (decimal)	COG Default	F _T :	0.143	0.143
F _{T,SOV} :	Percentage of people using a transit vehicle that previously were vehicle drivers (decimal)	COG Default	F _{T,SOV} :	0.561	0.561
TL _w :	Average auto trip length (miles)	COG Default	TL _w :	20	20.000
P _G	Annual Population Growth Rate assume 2.5%/Year	COG Default	P _G	0.025	0.025
Volume Fraction:	24 Hour Volume to Peak hour Volume Fraction. (peak hour volume / 24 hour volume)	COG Default	V _{FC}	0.380	0.380
VT _{RF}	(FT * FT,SOV + FRS * FRS,SOV) * (1 - 1/AVORS)		VT _{RF}	0.291	0.291
Conversion Factor:	Convert grams per mile of emissions to pounds per mile of emissions		Conversion Factor:	453.60	453.600
Variables:		Source			
V	Daily Volume of HOV lane	Data management	V	20049	20049 000

variables:	Source				
V _H , Daily Volume of HOV lane	Data management. DART Traffic Counts		V _н .	20049	20049.000
V _Y Daily Volume Year			V _Y	2010	
Projected Daily Volume of HOV lane	Estimate	V _{HOV}	276	38	27638
$V_{\text{GP},\text{B}}$ Volume of general purpose lane , before implementation of HOV.			$V_{\text{GP},\text{B}}$		0.000
$V_{\text{GP},\text{A}}$ Volume of General purpose lane , after implementation of HOV.			$V_{GP,A}$		0.000
N _P Total number of expected people using the HOV lanes per day. If Restricted HOV use only peak our Volume [Np =2.14*V _{HOV}]	Data management. DART Traffic Counts o calculated.	r	N _P	59145	59145
Np = 2.14 * V _{HOV}					
L Center Line Miles	Project Specifi	C	L	6.057	

L Center Line Miles

4.0 High-Occupancy Vehicle Facilities

on Factors:	Speed		NOx	VOO
TEF_{AUTO}: Auto trip-end emission factor (NO _x , VOC, or CO) (grams/trip)		TEF _{AUTO} :	0.37	0.47
EF: Speed-based running exhaust emission factor before implementation of HOV facility (NO _x , VOC, or CO) (grams/mile) (assume 43 mph, Light Duty Vehicles on fwy)	43mph	EF _B :	0.06	0.02
EF _{H,A} : Speed-based running exhaust emission factor on HOV facility (NO _x , VOC, or CO) (estimate) (assume 51 mph, Light Duty Vehicles on fwy)	51mph	EF _{H,A} :	0.06	0.02
EF _{GP,A} : Speed-based running exhaust emission factor after implementation of HOV facility (NO _x , VOC, or CO) (general purpose lanes) (estimate) (assume 43 mph, Light Duty Vehicles on fwy)	43mph	EF _{GP,A} :	0.06	0.02

Emission Calculations:				NO _x	voc
$\mathbf{A} = \mathbf{V}_{\mathbf{H},\mathbf{A}} * (\mathbf{EF}_{\mathbf{B}} - \mathbf{EF}_{\mathbf{H},\mathbf{A}}) * \mathbf{L}$	Change in running exhaust emissions from vehicles shifting from general purpose lanes to HOV lanes		A:	0.000	0.000
B = (V _{GP,B} * E _{FB} - V _{GP,A} *EF _{GP,A}) * L	Change in running exhaust emissions of vehicles in general purpose lanes as a result of vehicles shifted away from general purpose lanes [assume negligible]	[B =~ 0]	В:	0.000	0.000
C = VT _R [TEF _{AUTO} +EF _B *TLw]	Reduction in Emissions from Trip reduction- including auto start exhaust emissions and running exhaust emission from the entire trip	[C= (Np*VT _{RF}) *(TEF+EF _B *TLw)]	C:	27056.707	14993.207
			unit of measure:	grams/Day	grams/day
$VT_{R} = N_{P} * (F_{T} * F_{T,SOV} + F_{RS} * F_{RS,SOV}) * (1 - 1/AVO_{RS})$	Reduction in daily Automobile Vehicle trips	$[VTr = Np * VT_{RF}]$	VT _R :	17233.5717	17233.5717

Results:		NOx	VOC
Daily Emission Reduction = (A + B + C) / Conversion Factor	Daily Emission Reduction (Ibs/day) =	59.65	33.05
Daily Emission Reduction = (A + B + C) / Conversion Factor	Daily Emission Reduction (tons/day) =	0.03	0.02
Source: The Texas Guide to Accepted Mobile Source Emission Reduction, August 2007			
Shading denotes input variables specific to the project. Other variables are either standard for the progr	ram or calculated using these inp	uts.	
Blue - Project Specific Input			
Yellow - Assumptions			
Green - Emission Factors			

Speed and average volume on general-purpose lanes before and after implementation of the HOV facility are equal for part B. Local assumptions are calculated

5.0 Employer-Based Transportation Management Programs

5.1 Transit/Rideshare Services - Vanpools

	tion of vehicle trips and emissions through increased used of , carpooling, or vanpooling.	Project Year: 2023
transp homes	yers or groups of employers in activity centers provide ortation service to and from the work site to transit facilities and s. The services can include subscription buses, midday and park- de shuttles, and Guaranteed Ride Home programs.	Project Description:

Application: Large companies or groups of cooperating businesses.

Project Code: 11048

Variables:		NO _x	voc
EF _A : Speed-based running exhaust emission factor after implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehicle on all roadway types)	EF _A :	0.11	0.04
EF _B : Speed-based running exhaust emission factor before implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehicle on all roadway types)	EF _B :	0.11	0.04
NvA: Number of vehicles after implementation (equal to number of vanpools)	N _{VA} :	83.00	83.00
N _{VOR} : Vehicle Occupancy	N _{VA} :	9.00	9.00
N_{VB}: Number of vehicles before implementation (<i>equal to</i> vanpool occupancy * number of vanpools)	N _{VB} :	747.00	747.00
TEF _{AUTO} : Auto trip-end emission factor (NOx or VOC) (grams/trip)	TEF _{AUTO} :	0.37	0.47
TL_A: Average auto trip length after implementation (miles)	TL _A :	85.00	85.00
TL _B : Average auto trip length before implementation (miles)	TL _B :	35.00	35.00
VT_A: Vehicle trips after implementation	VT _A :	166.00	166.00
VT _B : Vehicle trips before implementation	VT _B :	1494.00	1494.00
Conversion Convert grams per mile of emissions to pounds per mile of emissions Factor:	Conversion Factor:	453.60	453.60
Equation:		NO _x	voc
A = VT_B * TL_B * EF_B Auto running exhaust emissions before strategy implementation	A :	5751.90	2091.60
B = $VT_A * TL_A * EF_A$ Auto running exhaust emissions after strategy implementation	В:	1552.10	564.40
C = (VT _B - VT _A) * TEF _{AUTO} Reduction in start exhaust emissions from reduction in vehicle trips to/from employment center	C :	491.36	624.16
Modified from the following Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007			
$VT_A = NV_A * 2$ trips/day Number of vehicles before or after strategy implementation	VT _A :	166.00	166.00
$VT_B = NV_B * 2 \text{ trips/day}$ multiplied by two trips per day (round trip).	VT _B :	1494.00	1494.00
Results:		NO _x	VOC
Daily Emission Reduction = [(A - B) + C] / Conversion Factor	Daily Emission Reduction (Ibs/day) =	10.34	4.74
	Daily Emission Reduction (tons/day) =	0.01	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, Texas Transportation Institute, August 2007

Local assumptions for vanpool projects are calculated from them monthly performance measures reported by the Dallas Area Rapid Transit and the Fort Worth Transit Authority for fiscal years 2004 to 2010. This analysis also incorporates an assumption of equal emission factors, trips, and trip length before and after implementation of the vanpool programs.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs. Blue - Project Specific Input

Yellow - Assumptions

7.0 Traffic Flow Improvements -- TTI Equation

7.1 Traffic Signalization

Strategy: Traffic signalization projects can measurably reduce CO and HC emissions by decreasing vehicular stops and idling, which would in turn reduce travel times and traffic delays.

intersections by improving interconnection and coordination of

signals, leading to reductions in travel times, delays, and stop-

and-go driving. Traffic signalization can be as simple as updating the equipment and/or software or improving the timing plan. Because signal improvements reduce travel times and stop-and-go driving conditions, they can measurably reduce CO and HC emissions as well as reducing fuel

Description: Traffic signalization increases the efficiency of traffic flow at

Project Year: 2023

Project Code:

Project Level 1 Improvement: Description: Basic Traffic Signal Retiming.

Application: Major arterials or high capacity roadways with uncoordinated traffic signals.

consumption.

Variables:	Source		NOx	voc
EF _I : Idling emission factor (NOx or VOC) (grams/mile) (equal to the emission factor at 2.5 mph for all vehicle types in all roadway).	MOVES3	EF,':	1.01	0.43
EF _I : Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get units of grams/hour)		EF _I :	2.53	1.08
D _B : Time delay before project implementation (seconds)	COG Default	D _B :	31.00	31.00
D _A : Time delay after project implementation (seconds)	COG Default	D _A :	25.00	25.00
V: Bi-directional arterial volume for analysis period	Project Specific	V:	19,590	19,590
P,H _R Peak Hour Ration	COG Default	P,H _R	0.46	0.46
$V_{D,P}$: Average daily volume during the peak period		V _{D,P} :	9011.40	9011.40
$V_{D,OP}$: Average daily volume during the off-peak period		V _{D,OP} :	10578.60	10578.60
DR: Reduction in time delay (seconds)	COG Default	DR:	6.00	6.00
Conversion Convert grams per mile of emissions to pounds per mile of Factor: emissions	Standard	Conversion Factor:	453.60	453.60
Equation:			NO _x	voc
A= (D _B - D _A) * EF _I Change in exhaust emissions from improved speed $* V_{D,P}$ during the peak and off-peak periods.		A :	37.92	16.15
$\begin{array}{l} \textbf{B=(D_B - D_A) * EF_1 Change in idling exhaust emissions from improved traffic}\\ * \textbf{V}_{\textbf{D,OP}} flow during the peak and off-peak periods.} \end{array}$		В:	44.52	18.95
Results:			NOx	voc
Daily Emission Reduction = (A + B)/Conversion Factor	Daily Emiss	sion Reduction (Ibs/day) =	0.18	0.08
	Daily Emiss	sion Reduction (tons/day) =	0.00	0.00

Local variable calculations utilize data from the Highway Capacity Manual, and the Dallas-Fort Worth Travel Demand Model. Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs. Blue - Project Specific Input Yellow - Assumptions

7.0 Traffic Flow Improvements -- TTI Equation

7.2 Traffic Operations: Intersection Improvements

5,	Reduce congestion in corridors and intersections, improving traffic speeds and reducing idling times, leading to lower emission and improved traffic system efficiency.	Project Year: 2023
·	Traffic operation improvements, similar to traffic signalization improvements primary focus on reducing congestion on local and arterial streets by improving the systems efficiency. Generally, each action will improve traffic flow and safety. Many roadway changes require only signage and pavement	Project Description:

Many roadway changes require only signage and pavement marking changes with little new construction and are relatively quick to implement.

Application: Major arterials or high capacity roadways.

Project Code:

Variables:		Source		NOx	VOC
EF _i ':	Idling emission factor (NOx or VOC) (grams/mile) (equal to the emission factor at 2.5 mph)	MOVES3	EF _i ':	1.01	0.43
EF _i :	Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get		EF _I :	2.53	1.08
D _B :	Time delay before project implementation (seconds)	COG Default	D _B :	31.00	31.00
D _A :	Time delay after project implementation (seconds)	COG Default	D _A :	25.00	25.00
V:	Bi-directional arterial volume for analysis period	Project Specific	V:	19,590.00	19,590.00
P,H _R	Peak Hour Ration	COG Default	P,H _R	0.46	0.46
V _{D,P} :	Average daily volume during the peak period		V _{D,P} :	9011.40	9011.40
V _{D,OP} :	Average daily volume during the off-peak period		V _{D,OP} :	10578.60	10578.60
DR:	Reduction in time delay (seconds)	COG Default	DR:	6.00	6.00
	Convert grams per mile of emissions to pounds per mile of emissions	Standard	Conversion Factor:	453.60	453.60
Equation:				NOx	voc
	Change in exhaust emissions from improved speed during the peak and off-peak periods.		A :	37.92	16.15
	Change in idling exhaust emissions from improved traffic flow during the peak and off-peak periods.		В:	44.52	18.95
Results:				NOx	voo
aily Emission R	teduction = (A + B)/Conversion Factor	Daily Emiss	sion Reduction (Ibs/day) =	0.18	0.08
		Daily Emiss	sion Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction, August 2007

Local variable calculations utilize data from the Highway Capacity Manual, and the Dallas-Fort Worth Travel Demand Model.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs. Blue - Project Specific Input Yellow - Assumptions

7.0 Traffic Flow Improvements

7.4 Intelligent Transportation Systems - Regional Benefits Calculation Methodology - 2023 Emissions

Reduction in Estimated Emissions in a County (NOx and VOC) = (Freeways + Toll roads + HOV Lanes Emissions) * (% Recurrent Congestion Eliminated) * (% ITS Coverage)

County	NO _X (tons/day)	VOC (tons/day)	% ITS Coverage	% Emission (Nonrecurrent)1	% Recurrent Congestion Eliminated		% Nonrecurrent Congestion Eliminated1
Collin	2.67	0.41	88%	N/A	5%		N/A
Dallas	13.27	2.17	87%	N/A	5%		N/A
Denton	2.71	0.38	89%	N/A	5%		N/A
Tarrant	7.11	1.24	88%	N/A	5%		N/A
Total	25.75	4.20					

	Collin	Dallas	Denton	Tarrant	Four County Total (tons/day)	Four County Total (Ibs/day)
Reduction in Estimated NOX Emissions Caused by Peak Hour Nonrecurrent Congestion1	N/A	N/A	N/A	N/A	N/A	
Reduction in Estimated NOX Emissions Caused by Peak Hour Recurrent Congestion	0.12	0.58	0.12	0.31	1.13	2,255.77
Reduction in Estimated Total NOX Emissions Caused by Peak Hour Congestion	0.12	0.58	0.12	0.31	1.13	2,255.77
Reduction in Estimated VOC Emissions Caused by Peak Hour Nonrecurrent Congestion1	N/A	N/A	N/A	N/A	N/A	
Reduction in Estimated VOC Emissions Caused by Peak Hour Recurrent Congestion	0.02	0.09	0.02	0.05	0.18	368.04
Reduction in Estimated Total VOC Emissions Caused by Peak Hour Congestion	0.02	0.09	0.02	0.05	0.18	368.04

Note: The methodology doesn't include nonrecurring congestion or off-peak condition

7.0 Traffic Flow Improvements -- TTI Equation

Project Code:

7.5 Grade Separation (Road-Road)

5,	Reduce congestion in corridors by reducing idling times and leading to lower emissions and improved traffic system efficiency.	Project Year: 2023
	Grade Separations increases the efficiency of traffic flow at intersections by reduction in travel times, delays, and stop-and-go driving.	Project Description:

Application: Major arterials or high capacity roadways.

Source		NO _x	VOC
MOVES3	EF _i ':	1.01	0.43
	EF _I :	2.53	1.08
COG Default	D _B :	45.00	45.00
COG Default	D _A :	0.00	0.00
Project Specific	v :	94,685	94,685
COG Default	P,H _R	0.46	0.46
	V _{D,P} :	43555.10	43555.10
	V _{D,OP} :	51129.90	51129.90
COG Default	DR:	45.00	45.00
Standard	Conversion Factor:	453.60	453.60
		NO _x	voc
	A:	1374.71	585.27
	В:	1613.79	687.06
		NO _x	voc
Daily Emiss	sion Reduction (Ibs/day) =	6.59	2.80
Daily Emiss	ion Reduction (tons/day) =	0.00	0.00
	MOVES3 et COG Default COG Default Project Specific COG Default Standard Daily Emiss	MOVES3 EF ₁ ': EF ₁ : COG Default D _B : COG Default D _A : Project V: Specific V: COG Default P,H _R V _{D,P} : V _{D,P} : V _{D,P} : COG Default DR: Standard Conversion Factor: A: B:	MOVES3 EF ₁ : 1.01 ef 1.01 1.01 COG Default D _B : 2.53 COG Default D _B : 45.00 COG Default D _A : 0.00 Project V: 94,685 Specific V: 94,685 COG Default P,H _R 0.46 V _{D,P} : 43555.10 V _{D,P} : COG Default DR: 453.60 Standard Conversion 453.60 Standard Conversion 453.60 MOx A: 1374.71 B: 1613.79 NO _x Daily Emission Reduction (lbs/day) = 6.59

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input	
Yellow - Assumptions	
Green - Emission Factors	

7.0 Traffic Flow Improvements

7.5 Railroad Grade Separation

	Grade separation of rail lines and arterial streets reduces congestion in corridors by reducing idling times and leading to lower emissions and improved traffic system efficiency.	Project Year: 2023
Description:	Railroad grade separations remove periodic traffic delays on major	Project

Description: Railroad grade separations remove periodic traffic delays on major roadways by raising or lowering either the rail line or the roadway and permitting more efficient flow of traffic at major rail crossings.

Application: Arterials with delays cause by at-grade rail crossings.

Variables:	Source		NO _X	voc
EF ₁ : Idling emission factor (NOx or VOC) (grams/mile). (Emission factor at 2.5 mph).	MOVES3	EF,':	1.01	0.43
EF ₁ : Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get units of grams/hour)		EF _I :	2.53	1.08
t _c : Average amount of time rail crossing is closed due to train crossing (hours/crossing)	TRE	t _c :	0.025	0.025
t _H : Duration of analysis period (hours)		t _H :	24.00	24.00
t_F Frequency of Train per analysis period.	TRE	t _F	30.00	30.00
$\mathbf{t}_{\mathbf{H},\mathbf{C}}\mathbf{:}$ Hours per analysis period roadway is closed due to train crossing	TRE	t _{H,C} :	0.75	0.75
V: Bi-directional arterial volume for analysis period	TxDOT	V :	19,656.49	19,656.49
Conversion Factor: Convert grams per mile of emissions to pounds per mile of emissions	Standard	Conversion	453.60	453.60

Factor:

Description/

Code:

Equation:		NO _X	voc
$\textbf{A}=\textbf{t}_{H,C}$ / \textbf{t}_{H} * V The proportion of arterial traffic affected by rail crossing delays	А:	614.27	614.27
B = t _c / 2 * EF ₁ The idling emissions resulting from affected traffic assumed to be idling half of the average time the roadway is closed per train crossing	В:	0.03	0.01

Results:		NO _X	VOC
Daily Emission Reduction = (A * B)/Conversion Factor	Daily Emission Reduction (Ibs/day) =	0.04	0.02
	Daily Emission Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies , August 2007

Local variable calculations utilize data from the Dallas-Fort Worth Regional Travel Model, Federal Railroad Administration, Union Pacific Railroad, the Association of American Railroads (Railroad Facts" 1999 Edition, the Trinity Railway Express June 2003 Schedule, and the Regional Rail Corridor Study Consultant Team: URS Corporation, Carter-Burgess, and Lonnie Blaydes Consulting.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input

Yellow - Assumptions

8.0 Park-and-Ride/Fringe Parking

	olo i ant and itage i anting	
8.1 New Facilities	6	
Strategy:	Reduction of vehicle trips and VMT by enhancements of transit system and ridesharing.	Project Year: 2023
Description:	Construction of new park-and-ride facilities in locations remote from the central city area or major business activity centers or on the fringes of major employment centers. Lots or garages are constructed adjacent to or very near transit facilities or heavily traveled corridors. These lots are designed to be conducive to several modes of transportation including pedestrian and bicycle facilities. New facilities will require coordination with other transportation agencies, and political and citizen groups.	Project Description:

Application: Cities with a population density great enough to warrant projects that encourage carpooling

Variables:	Source		NO _x	voc
EF _B : Speed-based running exhaust emission factor before implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehicles in all roadway types)	MOVES3	EF _B :	0.11	0.04
N _{PK} : Number of parking spaces	Project Specific	N _{PK} :	499	499
U_P: Parking lot utilization rate (estimate)	COG Default	U _P :	0.85	0.85
$\mathbf{TL}_{\mathbf{W}}$: Average auto work trip length (miles)	COG Default	TL _w :	20.00	20.00
TL_{PR}: Average auto trip length from home to parking facility (miles)	COG Default	TL _{PR} :	4.00	4.00
Conversion Convert grams per mile of emissions to pounds per mile of Factor: emissions		Conversion Factor:	453.60	453.60

Project Code:

Results	·		NO _x	voc
Daily Emissions Reduction=	$[N_{PK}$ * U_{P} * $(TL_{W}$ - $TL_{PR})$ * EF_{B} * 2 trips/day] / Conversion Factor	Daily Emission Reduction (Ibs/day) =	3.29	1.20
		Daily Emission Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, Texas Transportation Institute, August 2007. Local assumptions are calculated from data generated by the Dallas-Fort Worth Regional Travel Model, and from professional judgment of the North Central Texas Council of Governments staff.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input		
Yellow - Assumptions		
Green - Emission Factors		

11.0 Bicycle and Pedestrian Programs

11.1 Bicycle and P	edestrian Lanes or Paths	-			
Strategy: Replacement of vehicle trips and VMT with bicycle and pedestrian travel.		Project Year: 2023			
Description	: A wide variety of bicycle and pedestrian projects are available to practitioners for implementation in air quality mitigation efforts. Funding for these types of programs has increased dramatically under ISTEA and TEA-21. Examples of such projects include (but are not limited to): reallocation of right-of-way to accommodate bicycles and pedestrians, new trails, median refuges at key intersections, improved connections between residential areas and transit stops.		Project Description:		
Application	: Areas where travel distances (residential/work or retail sites, for example) are short enough for bicycle/ pedestrian travel to be practical.		Project Code:		
Variables	:	Source		NOx	VOC
EFB	: Speed-based running exhaust emission factor for participants' trip before participating in the bike/pedestrian program (NO _x or VOC) (grams/mile) (assume 34 mph, LDV and arterial roadway types).	MOVES 3	EF _B :	0.06	0.02
TEF _{AUTO} :	: Auto trip-end emission factor (NOx or VOC) (grams/trip)	MOVES 3	TEF _{AUTO} :	0.37	0.47
TL _B	: Average auto trip length before implementation (miles)	COG default	TL _B :	1.00	1.00
N _{BW}	: Number of trips utilizing the bike/pedestrian facility	Project Specific	N _{BW} :	2,020	2,020
	Where,				
 N_{BW} is calculated using bike needs indices (BNI) and pedestrian needs indices (PNI). Conversion Factor: Convert grams per mile of emissions to pounds per mile of emissions 			Conversion Factor:	453.6	453.6
Results:				NOx	voc
Daily Emissions Re Factor	eduction = (N _{BW} * TL _B * EF _B) + (N _{BW} * TEF _{AUTO})/ Conversion		Daily Emission Reduction (Ibs/day) =	1.91	2.18
			Daily Emission Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007 Final Units of measure: grams/day.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input Yellow - Assumptions