

Models and Data for All Hazards – introducing TDIS

Overview of Texas Disaster Information System & a discussion of our initial use case

March 9, 2022

AGENDA

TNRIS Forum March 9, 2022

5 minutes	Introducing IDRT & TDIS
5 minutes	TDIS Design Concepts & Approach
5 minutes	Use case Discussion
5 minutes	Discussion / Wrap Up

The cornerstone project for the Institute is the Texas Disaster Information System (**IDRT**). This project is currently its initial implementation phase, but will be an interactive, analytical, and visual web-based spatial data system designed to support more resilient decision making at the state level.

RESILIENT TEXAS

Ę

The cornerstone project for IDRT is the Texas Disaster Information System (TDIS).

IDRT Program Areas

- Hazard Analytics
- 2 Ri Pe
 - Risk Communication & Perception
- 3 Policy & Decision Support
- 4 Education
- Coastal Risk Reduction

Sam Brody, PhD IDRT Executive Director sbrody@tamug.edu

Suzanne A. Pierce, PhD *TDIS Director* spierce@tacc.utexas.edu

Logistics & Operation

We are transdisciplinary and multi-institutional with funding from project-based grants/contracts and indirect return.

Created by TAMU System

IDRT is located in Houston

Administration based at TAMUG

Partnered with UT Austin (TACC, CSR, Oden)

Acts at the State-Wide Level (and beyond?)

TDIS DRAFT Living Plan Version 1.0 has Published

https://tdis.io/

Texas Disaster Information System Living Plan

Version 1.0

	Federal				Key TDIS Partners
	FEMA USACE				Texas A&M University (IDRT)
	State TDEM GLO TWDB	Government Institutions	Acad	demia	University of Texas (TACC) Other Partners Rice University
	Elected Officials Local Counties, special districts,	Planning, Regulation, Grantmaking, Accountability	Research; Evaluatic Implem Edu	Innovation; on; Testing; nentation; ication	University of Iowa University of Texas-Arlington
	councils of governments, public works	ALL ARE TI CONSUME	DIS RS,		
CURRENT PH	HASE (Flood)	CONTRIBUTORS COMPLEMENTO	5, & DRS Appli	ication;	Vendors/contractors Engineering Cos
KEY T	DIS	TDIS	Services	; Products	Technology Cos Other Consultants
STAKE	HOLDERS		Private	e Sector	
& ROI	FS		Awa	ireness;	Nonprofits
			Adv	vocacy	General Public

TDIS Conceptual Architecture To Implementation

Defines data domains by hazard type

Distinguishes Thresholds

- Data-to-Information
- Information-to-Knowledge

Design will consider multiple strategies to manage

- Data-proximate computing
- Hybrid compute services
- Processes to define data models
- Data registration tiers
- Reusable workflows & algorithms
- Usability and flex test protocols
- Cross-organizational security

Consumer

TDIS Development Timeline

TDIS adopts an iterative and agile approach to development.

Hazard TypesFlooding as initial focus hazard...... then add and iterate into the
eventual all-hazards system.

Disaster Domains/ Use Cases Start with a focus on *direct tie-ins* to existing **planning and mitigation** programs...

... with intention to *support* recovery and response.

Core TDIS Services Breakdown

Use Cases

- Domain problems drive the use case selection
- Initial implementation includes straightforward examples
- Early use cases tightly connected with feature requirements
- Initial use case(s) have arisen organically *future use cases will be selected using a rubric or SOP*

Introducing - Model Management System (ms2)

- Project in co-development (TWDB Team, headed by Reem Zoun)
 - Flood Planning Coordination with TWDB
 - Assist with flood model metadata descriptions
 - Develop a model & data indexing service for both regional and central TWDB staff for registering and uploading models and associated data
 - TWDB Staff then 'accept' the models after both an automated and human check of the model, metadata and structure

MS2 Use Case - details

- In Flight right now user testing finished in April!
- Provides mechanisms to register metadata through a user interface for vendors
- Provides means of uploading very large archives (up to 50gb) of data to TDIS file system
- Provides TWDB Staff the means of visualization files and directory structure and validate models and associated files through online web application
- But to really discuss the system we need to discuss metadata for a bit...

Metadata???!!!????

MS2 Use Case – details No really - Its all about the metadata!

- Our working metadata specification provided the basis of our TDIS DB Data model – published here <u>https://github.com/TexasDIS/metadata</u>
- That data model has provided development teams with a basis for discussions on workflows and synergy
- Having the metadata also provides a starting point for how TDIS is categorizing problem spaces. And then the comparison of that problem space with collaborators.

MS2 Use Case – details It's all about the metadata!

- The basis of the model is a Collection a logical construct that could take the form of a project, spatial extent, or any other grouping of files.
- Collections can have Layers, Models and Artifacts within them
- The specification is published for each of the digital objects
- Each of these then provides a starting point for building workflows with partners and projects.
 Having the specification transparent means that others then can map or have us map their information to ours. This business model has provided novel and emergent use cases for future development

Metadata

Metadata

expand as lists or hierarchies of valid terms.

Metadata

🖵 TexasD	IS/me	tad	lata (Public				ি☆ Pin ⊙ W	/atch 4 👻 양 Fork 1 🟠 S
<> Code	💿 Issi	ues	2	1 Pull reques	ts 🕞 Actions	: 🖽 Projects 🖽 W	iki 🕕 Security 🗠 Insights 🛛 🕸 Set	ttings	
	۶° r	nain	• n	netadata / fiel	ds_by_level / m	odel_metadata_fields.	csv		Go to file
	0	Ann	a Dabro	owski Update m	netadata documen	itation.		Latest commit e	ee4e5dd 13 days ago 🕚 History
	શ્ર 0	con	tributor	S					
	36 1	ines	(36 sl	oc) 8.03 KB					Raw Blame 🖵 🖉 🖞
	Q Se								
			status	metadata_level	metadata_group	display_name	definition		
		1	Core	Model	Access	Distribution Method	A statement describing the method of distribution	and access provided by th	ne Distributor or Publisher.
		3	Core	Model	Access	Distribution URL	The URL where the digital object can be accessed	l via a service endpoint, AP	Pl, etc.
		0	Core	Model	Access	Distributor or Publisher	The organization sharing, publishing, or otherwise	responsible for providing	access to the digital object.
		2	Core	Model	Access	Service Endpoint Type	The type of service endpoint used for distribution.		
		59	Core	Model	Administrative	Collection Identifier	The TDIS unique identifier for the associated colle	ction.	
		8	Core	Model	Administrative	Date Created	Date the digital object was originally created. Mus	t conform to the ISO 8601	standard.
		4	Core	Model	Administrative	Date Last Updated	The date the digital object was last updated. Must	t conform to the ISO 8601	standard.
		12	Core	Model	Administrative	Date Metadata Updated	Date the metadata record was last updated. Must	conform to the ISO 8601 s	tandard.
	10	9	Core	Model	Administrative	Date Submitted	Date the digital object or metadata record was sul	bmitted to TDIS. Must conf	orm to the ISO 8601 standard.
		5	Core	Model	Administrative	Identifier	The TDIS unique identifier for the digital object.		

MS2 Use Case – details OK – AND also about the data

- Another important aspect of TDIS is the ability to provide storage and bandwidth for uploading and downloading very large file archives
- Building out a workflow to provide these services to partners has also provided us with opportunities with other partners.
- Very large archives (> 7GB) are hard to *shove* around on the internet. SO, this service becomes a useful starting point in attracting interesting to TDIS
- A little about the solution I am using java, the S3 API and MinIO to orchestrate the stable transfer of 30+ GB archives

TDIS Ecosystem

Implementation 0-18 months

TDIS

CORE

Data

Management

Services

- 1. Collect and ingest datasets and digital objects from 4 regions.
- 2. Coordinate with GLO Vendors to design features and capabilities.
- 3. First data services test cases.
- State Hazard Mitigation Plan
 - Project is in-flight
 - 1. Collect and store high quality hazards data
 - 2. Develop a statewide relational hazards database.
 - 3. Perform statewide hazard exposure, vulnerability, and risk assessments.
- Louisiana Model Management System
 - Project is in co-development (TWI & Hugh Roberts)
 1. Develop data inventory metadata services

??? Opportunistically Optimistic

Introducing - Model Management System (ms2)

• Obligatory Workflow Diagram

AA

Thank you!

Brent Porter Software Engineer, Texas Disaster Information System

bporter@csr.utexas.edu

