

Large-scale remote sensing testing in four cities in Scotland 2021–2023: Key findings

Kaylin Lee

International Council on Clean Transportation (ICCT)

NCTCOG Heavy-Duty Diesel Vehicle Inspection and Maintenance Working Group Meeting

November 21, 2024

Air Remote Sensing Project

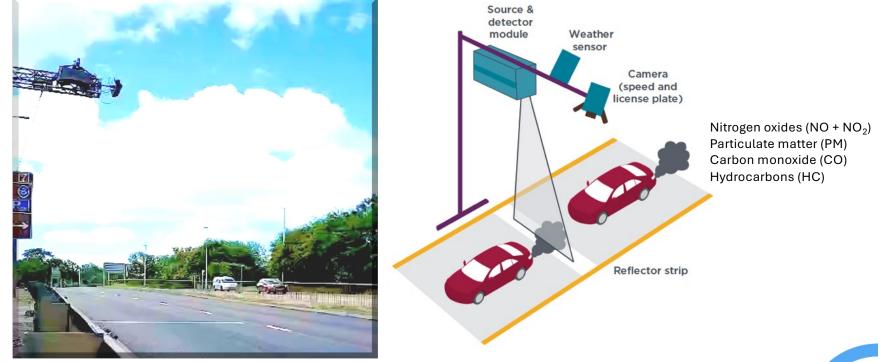
- To deploy remote sensing systems in four major cities in Scotland to collect vehicular emission data in various seasons and roadways over 3 years
- To analyze data to drive informed decisions and policies aimed at reducing vehicle emissions
- To form the first network of cutting-edge remote sensing air quality monitors in a low emission zone
- The most extensive vehicle remote emission sensing data collection carried out in Europe to date

The Real Urban Emissions (TRUE) initiative

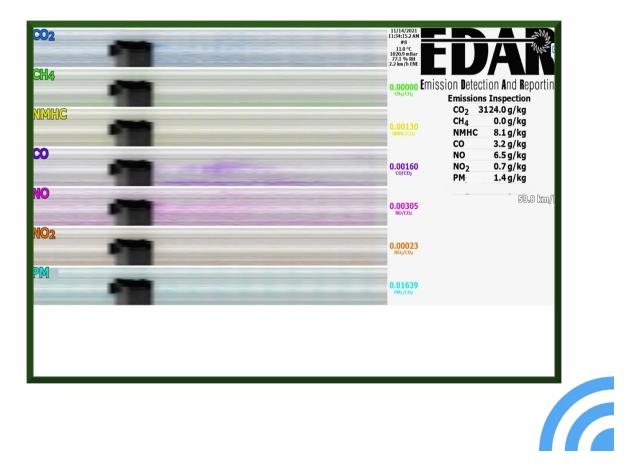
TRUE seeks to supply cities with data regarding the real-world emissions of their vehicle fleets and equip them with technical information that can be used for strategic decision making.

ENVIRONMENT | Wed Mar 29, 2017 | 10:44am EDT

Paris and London mayors announce scheme to gauge car emissions

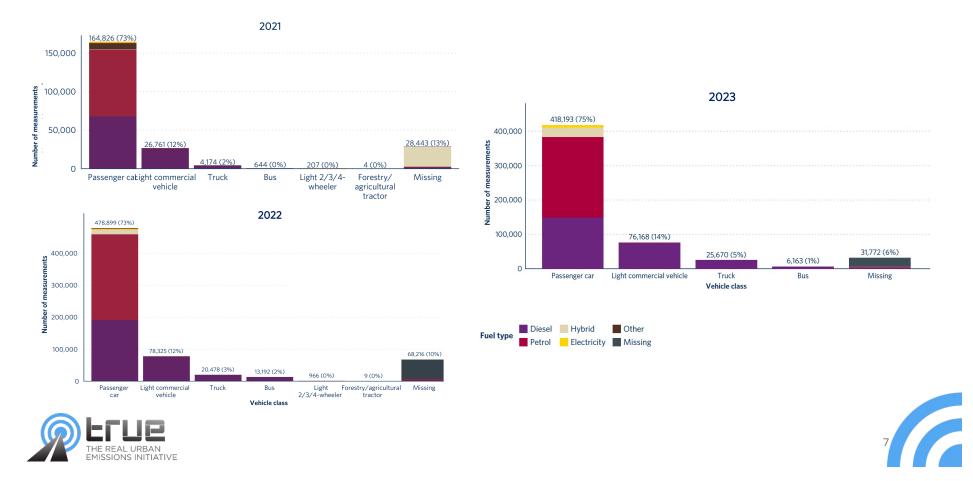


London Mayor Sadiq Khan (L) and Paris Mayor Anne Hidalgo attend a meeting on air pollution in Paris, 1/2 France, March 29, 2017. REUTERS/Gonzalo Fuentes


What is remote emissions sensing?

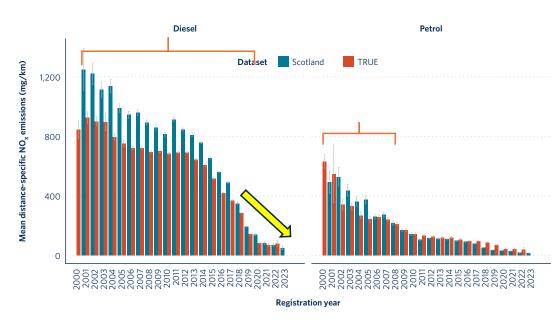
Emission Detection and Reporting (EDAR) systems

- Laser-based, aerial remote sensing technology
- Data collection 24/7, unmanned, possible for almost all weather conditions and roadways
- An interface showing emissions in real-time
- Emissions data integrated with Driver and Vehicle Licensing Agency database enabling the access of full vehicle records



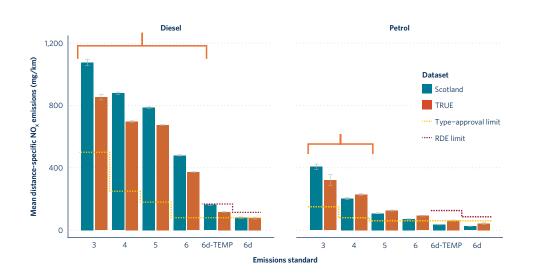
1.4 million emission measurements collected over 3 months from 2021 to 2023

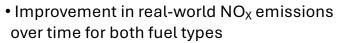
Campaign	Cities	Testing months	# of measurements
2021	Edinburgh, Glasgow	Oct – Nov	~ 225,000
2022	Edinburgh, Glasgow, Aberdeen, Dundee	Apr – May Sep – Oct	~ 660,000
2023	Edinburgh, Glasgow, Aberdeen, Dundee	Jun – Jul	~ 559,000
2021 – 2023			~ 1,444,000



Similar fleet compositions measured in 3 different years

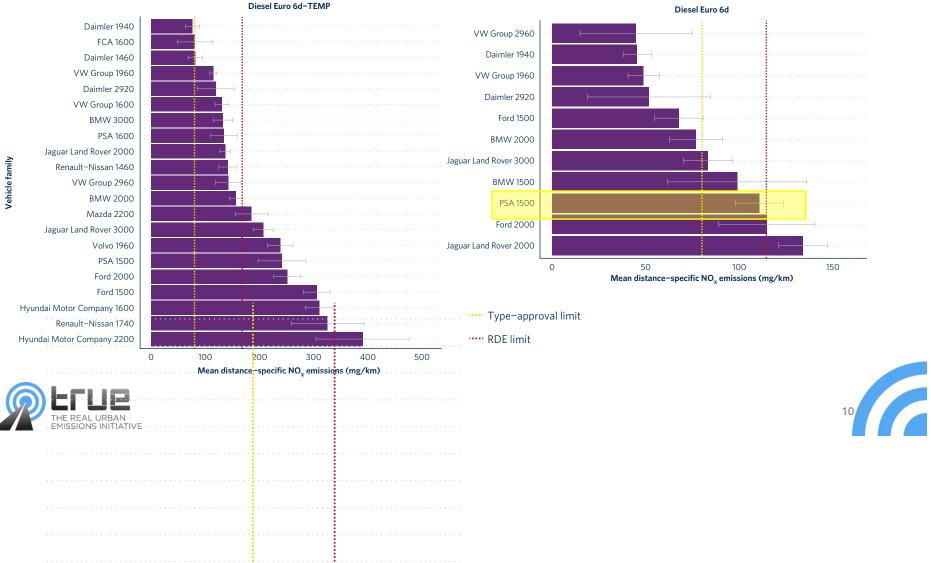
Despite the improvement in emission performance, NO_X emissions from old diesel cars remain largely a problem



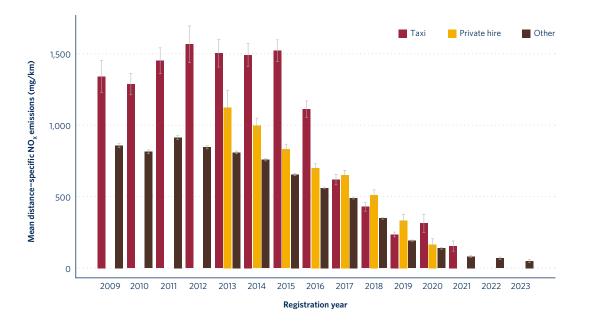

EFUE THE REAL URBAN EMISSIONS INITIATIVE

- \bullet Improvement in real-world NO_X emissions over time for both fuel types
 - Decline in emissions 2018 2020 thanks to Real Driving Emissions (RDE) testing
- Comparison with other European cities
 - 30% higher NO_X from Scottish diesel vehicles before 2020 (Euro 3 6a-c)
 - 20% higher NO_X from Scottish petrol vehicles of 2000 2008 (Euro 3 4)
- \bullet Average real-world NO_{X} from RDE vehicles below RDE limits

Despite the improvement in emission performance, NO_X emissions from old diesel cars remain largely a problem

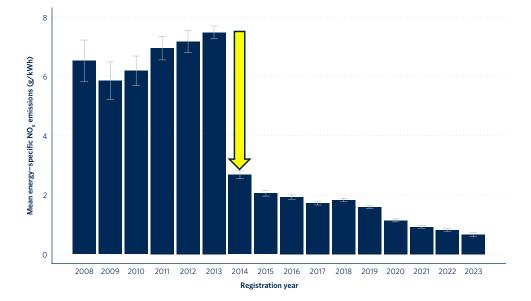


- Decline in emissions 2018 2020 thanks to Real Driving Emissions (RDE) testing
- Comparison with other European cities
 - 30% higher NO_X from Scottish diesel vehicles before 2020 (Euro 3 6a-c)
 - 20% higher NO_X from Scottish petrol vehicles of 2000 2008 (Euro 3 4)
- \bullet Average real-world NO_{X} from RDE vehicles below RDE limits



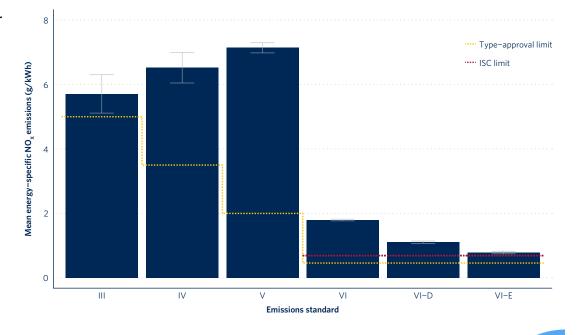
And NO_X emission performance of diesel RDE vehicles varies by manufacturers (OEMs)

High-usage vehicles like taxis and private hires show significantly higher real-world emissions than other passenger cars


- High real-world NO_X emissions from 2009 2016 taxis (Euro 5 6)
 - 84% higher than other passenger cars
 - 56% higher than private hires
 - emission deterioration attributable to high mileage

NO_X emissions from trucks have decreased substantially with Euro VI standards

- A large fall in NO_X emissions from 2014 (introduction of Euro VI)
- Subsequent decrease in NO_X throughout Euro VI – VI-D – VI-E due to updates to the in-service conformity (ISC) testing requirements
- Highest mean NO_X emissions from Euro V trucks (2011 2013)
 - 3.5 times regulatory limit
 - Natural degradation past durability period
 - Possible indication of tampered or malfunctioning emission control systems

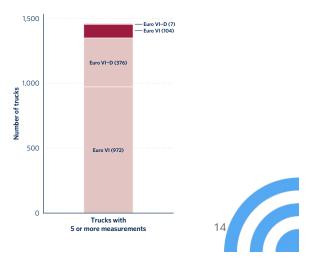


NO_X emissions from trucks have decreased substantially with Euro VI standards

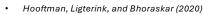
- \bullet A large fall in NO_{X} emissions from 2014, or Euro VI
- Subsequent decrease in NO_X throughout Euro VI – VI-D – VI-E due to updates to the in-service conformity (ISC) testing requirements
- Highest mean NO_X emissions from Euro V trucks (2011 2013)
 - 3.5 times regulatory limit
 - Natural degradation past durability period
 - Possible indication of tampered or malfunctioning emission control systems

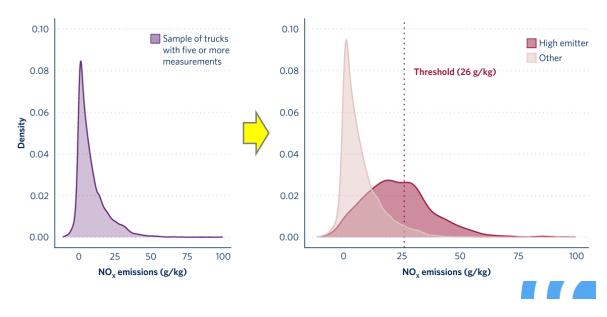
Defining a threshold for detecting trucks with defective or tampered emission control systems

- Instantaneous emissions are not sufficient to determine whether a vehicle is a high emitter or not
 - High-emission events are possible for normally behaving vehicles (e.g., cold engine, vehicle under high load, etc.)
- Emission levels may vary by country due to atmospheric conditions, etc.
 - Unsuitability of thresholds defined in studies conducted in other countries


- Sample of vehicles repeatedly measured (> 5) over the three years
 - Little variance in emissions from Euro VI trucks; more notable difference in emissions from high emitters and normally behaving vehicles

- Core assumptions:
 - Normally behaving vehicles can show high emissions in some instances
 - BUT high emitters would show consistently high emissions


Emissions standard	Number of measurements	Number of unique vehicles	
VI	10,788	1,076	
VI-D	4,419	383	
Total	15,207	1,459	



The identified threshold of 26g(NO_X)/kg(Fuel) can be used for real-world enforcement settings

- **7.6% high emitters** with median NO_X emissions nearly **5 times** those of normally behaving vehicles
- Newly updated threshold: 26g(NOx)/kg(Fuel)
 - Low false positive rate of 3%
- Correct detection rate can be improved with multiple measurements
 - 36% with 1 measurement
 - 90% with 5 measurements
- Long-term monitoring with remote sensing can be used to flag trucks for inspection or repair

- Threshold = $\mu + 2\sigma$
- μ = median of clean vehicle emission distribution
- σ = standard of deviation, or spread, of clean vehicle emission distribution

Conclusions and policy recommendations

- To address persistent excess NO_x emissions from diesel vehicles and accelerate the uptake of cleaner vehicles
 - Update MOT testing to include NO_X testing and address NO_X emission control technology deterioration
 - Scrappage programs to support the scrapping of old cars and subsidize the purchase of cleaner vehicles
 - Feebate at car purchase; a fee on the purchase of high polluting vehicles and a rebate on BEVs
- To reduce NO_X emissions from trucks
 - Restrict the use of Euro V trucks (covered in the low emission zones)
 - Identify Euro VI trucks with defective or tampered emission control systems for repair
 - Remote sensing systems can help to identify tampering or malfunction and assist on-road inspection
- On the EU level,
 - Require NO_X and PN testing during periodic technical inspection (PTI)
 - Harmonize PTI criteria across EU Member States

All three reports on *real-world vehicle emissions in Scottish cities* are available on <u>https://www.trueinitiative.org/</u>

Thank you for your attention!

k.lee@theicct.org