Water Reuse Webinar

North Central Texas Council of Governments Environment and Development Department August 22, 2017

North Central Texas Council of Governments Environment & Development

Please welcome our first speaker:

Glenn Clingenpeel Trinity River Authority

North Central Texas Council of Governments Environment & Development

Reuse, Water Supply and Environmental Flows in the Trinity River Basin

NCTCOG Webinar August 22, 1017

Wastewater Treatment - Water Treatment - Water Storage - Lake Livingston - Recreation

API CANAL

Outline

Glenn Clingenpeel

Overview of Trinity River Basin Basin and Hydrology Water Supplies

History of Reuse in the Region Historical Perspective

Types of Potable Reuse Indirect Potable Reuse Direct Potable Reuse

Concerns over impacts to instream flows

Outline

Webster Mangham

Trinity River Flows - Historical Perspective Trinity River Flows WWTP Discharges Past, Present, and Future Flows

Environmental Flows SB2 and SB3 TRA Environmental Flow Studies Preliminary Results

Next Steps

Reuse and Water Supply

Glenn Clingenpeel

Wastewater Treatment • Water Treatment • Water Storage • Lake Livingston • Recreation

Trinity River Basin

Population ~7 million Jallas Approximately half of Vorth Texas' population depends on the Trinity River basin for at least part of its water supply. Since 1911, more than 32 water-supply reservoirs have been built within the basin. Population 6.5 million Houston

•

Precipitation in North Texas

Net Precipitation in North Texas

Precipitation and Evaporation in North Texas

6 4 2 Monthly Precip/Evap (Inch) 0 Mar May Sep Oct Nov Feb Apr Aug Dec Jun Jan Ju -2 -4 -6 -8 Precip (Inches) -10

7

DFW Long-Term Monthly Average Precipitation & Evaporation

Conventional water supplies in North Texas are from increasingly distant sources

2016 Region C Water Plan

Return Flows Happen Where You Need Them

History of Reuse in Texas

1800's *De facto* reuse in San Antonio through acequías - irrigation canals

1968 Water Plan Recognized Importance of Reclaimed Water

TEXAS WATER DEVELOPMENT BOARD NOVEMBER 1968 Return flows are..."an essential and valuable water resource that should be managed and administered conjunctively with other water resources"

First Major Urban Indirect Non-potable Water Plan Project

In 1997 TRA obtained a Water quality permit from the TCEQ to discharge reclaimed wastewater into the lakes at Las Colinas

2016 Region C Plan

7

2016 Region C Water Plan

December 2015

Prepared for

Region C Water Planning Group

Freese and Nichols, Inc.

Alan Plummer Associates, Inc.

CP&Y, Inc.

Cooksey Communications, Inc.

2016 Region C Plan identifies 283,893 AF of reuse available in 2020

Urban Counties are Expected to Grow Significantly

The population of Region C is projected to more than double over the next 50 years, from nearly
7 million in 2014 to more than 14.3 million by 2070

• Will Drive Water Demands Higher

Regional Water Supplies

Region C (D/FW area) shows significant shortages in 2070

Region C

 Current Supply:
 1,631,341 AF/yr

 Projected Demand:
 2,939,880 AF/yr

 Projected Deficit:
 (1,308,539) AF/yr

4,263,351,000 gallons/yr

Water Supply Strategies

Key Points – Indirect Reuse

- Water Right Application (non-reuse)
 - Based on WAM Model Run 3 Does not consider return flows
 - Reuse subject to 100% direct reuse prior to discharge
- Under a reuse permit, only water put in can be taken out

Key Points – Indirect Reuse

- Indirect reuse limited in practice to number of times it can be used - WQ Issues
- In Region C (upstream) major future water demand is municipal;
 - Not 100% consumptive
 - Remainder discharged and allowed to flow downstream

Direct Potable Reuse

High **Required Acceptance of Potable Reuse** Low

Direct potable Reuse (DPR)

Engineered potable Reuse (EPR)

Passive potable Reuse (PPR) Continuum of Reuse Projects and Need for Public Acceptance

De facto potable Reuse (dfPR)

Non-potable Reuse (NPR)

Direct Potable Reuse

Began out of necessity in West Texas during drought of 2010-2014

U.S. Drought Monitor Texas

October 11, 2011 (Released Thursday, Oct. 13, 2011) Valid 7 a.m. EST

|--|

	Drought Conditions (Percent Area)					
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	0.00	100.00	100.00	99.15	91.96	73.13
Last Week 10/4/2011	0.00	100.00	100.00	99.16	96.99	87.99
3 Month s Ago 7/12/2011	0.00	100.00	97.43	95.78	90.97	71.66
Start of Calendar Year 1/4/2011	13.55	86.45	66.68	36.30	13.04	0.00
Start of Water Year 9/27/2011	0.00	100.00	100.00	99.16	96.65	85.75
One Year Ago 10/1 2/2010	72.27	27.73	3.79	1.03	0.02	0.00

Intensity:

D0 Abnormally Dry D3 Extreme Drought D1 Moderate Drought D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author: Richard Tinker CPC/NOAA/NWS/NCEP

http://droughtmonitor.unl.edu/

DPR As A Substitute Commodity

Direct Potable Reuse

- Only makes sense in a limited number of cases
 - Probably does not make sense in North Texas
 - Numerous reservoirs in which to divert and store return flows
 - High-quality surface water
 - Could be used as an emergency supply
 - maintaining the infrastructure is prohibitively expensive

Potable Reuse - Future

Please welcome our second speaker:

Webster Mangham Trinity River Authority

North Central Texas Council of Governments Environment & Development

Reuse and Return Flows

Webster Mangham

Wastewater Treatment • Water Treatment • Water Storage • Lake Livingston • Recreation

Outline

Trinity River Flows - Historical Perspective Trinity River Flows WWTP Discharges Past, Present, and Future Flows

Environmental Flows SB2 and SB3 TRA Environmental Flow Studies Preliminary Results

Next Steps

Mid Trinity, 1899

D/FW Population and Base Flows

6,000,000

Cumulative Discharge (ac-ft) at USGS Gages Along Trinity

Comparison of USGS Measured Flows Between 1956 and 2011 at Mid and Lower Trinity

Percent of Texas Listed in Drought

■ Mild ■ Med ■ Severe None
Percent of Texas Listed in Drought

Water Availability Models Percent Exceedance Curves, Trinity at Rosser

Water Availability Models Percent Exceedance Curves, Trinity at Rosser

Water Availability Models Percent Exceedance Curves, Trinity at Romayor

Water Availability Models Percent Exceedance Curves, Trinity at Galveston Bay

2015 Cumulative Flow in Trinity River South of Dallas

Environmental Flows

- SB2 (2001) Texas Instream Flows Program
 - -<u>*TIFP*</u> = TCEQ, TWDB, & TPWD
 - Goal: Identify flow regimes that support a <u>sound</u> <u>ecological environment.</u>
- SB3 (2007) Environmental Flows Process
 - Best Available Science
 - Establish Environmental Flow Standards
 - Adaptive Management

TRA Environmental Flow Studies

- 2010 Baseline Longitudinal (225 mi.)
- 2011 Longitudinal Study FW to Lake Livingston (290 mi.)
- 2012 Baseline Biological (TPWD & TRA)
- 2012 SB3 Flow Standards Approved
- 2012 Upper Trinity Biological
- 2013 Longitudinal Study Lake Livingston to the Bay (118 mi.)
- 2013 Long-term Sites (2012-Ongoing)
- 2014 **SB2** Texas Instream Flow Program
- 2015-Present E Flow Validation Studies

TR is Very Dynamic

Evaluation of SB3 Flow Standards

	8	049500				80	49500		
	Gra	nd Prairie				E	Dallas		
Season	Subsistence cfs	Base cfs	Pul	se cfs	Season	Subsistence cfs Base cfs Pu		Puls	e cfs
			Trigger	300 cfs				Trigger	700 cfs
Winter	19 cfs	45 cfs	Volume	3,500 af	Winter	26 cfs	50 cfs	Volume	3,500 af
			Duration	4 days				Days	3 days
Spring 25		45 cfs	Trigger	1,200 cfs	Spring	37 cfs	70 cfs	Trigger	4,000 cfs
	25 cfs		Volume	8,000 af				Volume	40,000 af
			Days	8 days				Days	9 days
			Trigger	300 cfs				Trigger	1,000 cfs
Summer	23 cfs	fs 35 cfs	Volume	1,800 af	Summer	22 cfs	40 cfs	Volume	8,500 af
			Days	3 days				Days	5 days
		35 cfs	Trigger	300 cfs	Fall			Trigger	1,000 cfs
Fali	21 cfs		Volume	1,800 af		15 cfs	50 cfs	Volume	8,500 af
			Days	3 days				Days	5 days
	8065000					8066500			
	80	65000				80	066500		
		65000 kwood		_			066500 omayor		
Season			Pul	se cfs	Season			Puls	se cfs
Season	Oa	kwood Base cfs	Pul Trigger	se cfs 3,000 cfs	Season	Ro	omayor	Puls Trigger	se cfs 8,000 cfs
Season Winter	Oa	kwood			Season Winter	Ro	omayor		
	Oa Subsistence cfs	kwood Base cfs	Trigger	3,000 cfs		Ro Subsistence cfs	Base cfs	Trigger	8,000 cfs
	Oa Subsistence cfs	kwood Base cfs	Trigger Volume	3,000 cfs 18,000 af		Ro Subsistence cfs	Base cfs	Trigger Volume	8,000 cfs 80,000 af
	Oa Subsistence cfs	kwood Base cfs	Trigger Volume Days	3,000 cfs 18,000 af 5 days		Ro Subsistence cfs	Base cfs	Trigger Volume Days	8,000 cfs 80,000 af 7 days
Winter	Oa Subsistence cfs 120 cfs	kwood Base cfs 340 cfs	Trigger Volume Days Trigger	3,000 cfs 18,000 af 5 days 7,000 cfs	Winter	Ro Subsistence cfs 495 cfs	Base cfs - 875 cfs	Trigger Volume Days Trigger	8,000 cfs 80,000 af 7 days 10,000 cfs
Winter	Oa Subsistence cfs 120 cfs	kwood Base cfs 340 cfs	Trigger Volume Days Trigger Volume	3,000 cfs 18,000 af 5 days 7,000 cfs 130,000 af	Winter	Ro Subsistence cfs 495 cfs	Base cfs - 875 cfs	Trigger Volume Days Trigger Volume	8,000 cfs 80,000 af 7 days 10,000 cfs 150,000 a
Winter	Oa Subsistence cfs 120 cfs	kwood Base cfs 340 cfs	Trigger Volume Days Trigger Volume Days	3,000 cfs 18,000 af 5 days 7,000 cfs 130,000 af 11 days	Winter	Ro Subsistence cfs 495 cfs	Base cfs - 875 cfs	Trigger Volume Days Trigger Volume Days	8,000 cfs 80,000 af 7 days 10,000 cfs 150,000 a 9 days
Winter Spring	Oa Subsistence cfs 120 cfs 160 cfs	kwood Base cfs 340 cfs 450 cfs	Trigger Volume Days Trigger Volume Days Trigger	3,000 cfs 18,000 af 5 days 7,000 cfs 130,000 af 11 days 2,500 cfs	Winter Spring	Ro Subsistence cfs 495 cfs 700 cfs	Base cfs - 875 cfs 1150 cfs	Trigger Volume Days Trigger Volume Days Trigger	8,000 cfs 80,000 af 7 days 10,000 cfs 150,000 a 9 days 4,000 cfs
Winter Spring	Oa Subsistence cfs 120 cfs 160 cfs	kwood Base cfs 340 cfs 450 cfs	Trigger Volume Days Trigger Volume Days Trigger Volume	3,000 cfs 18,000 af 5 days 7,000 cfs 130,000 af 11 days 2,500 cfs 23,000 af	Winter Spring	Ro Subsistence cfs 495 cfs 700 cfs	Base cfs - 875 cfs 1150 cfs	Trigger Volume Days Trigger Volume Days Trigger Volume	8,000 cfs 80,000 af 7 days 10,000 cfs 150,000 a 9 days 4,000 cfs 60,000 af
Winter Spring	Oa Subsistence cfs 120 cfs 160 cfs	kwood Base cfs 340 cfs 450 cfs	Trigger Volume Days Trigger Volume Days Trigger Volume Days	3,000 cfs 18,000 af 5 days 7,000 cfs 130,000 af 11 days 2,500 cfs 23,000 af 5 days	Winter Spring	Ro Subsistence cfs 495 cfs 700 cfs	Base cfs - 875 cfs 1150 cfs	Trigger Volume Days Trigger Volume Days Trigger Volume Days	8,000 cfs 80,000 af 7 days 10,000 cfs 150,000 a 9 days 4,000 cfs 60,000 af 5 days

Evaluation of SB3 Flow Standards

Goal:

Use data to assess the instream physical and ecological functions of the SB3 Flow Standards. Tasks:

- 1. Reconnaissance 5. Data Analysis
- 2. Study Design/Site Selection 6.
- 3. Field Work
- 4. Data Processing

- 6. Reporting
 - 7. Data Archiving
 - 8. Information Dissemination

Long-term Monitoring Sites

Hardened Benchmarks

Sediment Collection

Survey Grade GPS

Laser Scanning and Total Station

Bathymetry

Riparian

Automated Game Cameras

Automated Game Cameras

Linear Survey

Oakwood – May 2016, 12,350 cfs , 33 mi						
SB3 Pulse	Winter	Spring	Summer	Fall		
Oakwood	3k	<u>7k</u>	2.5k	2.5k		

٠ _ ١

Linear Survey

Analysis

Automated Game Cameras

Analysis

Riparian – 5,000 cfs

Modeling

Analysis

Sediment

	Channel shear stress (lb/sf) and transportable grain size					
	XS5 - downstream		XS4 - riffle		XS2 - upstream	
Flow (cfs)	Shear stress	Grain size	Shear stress	Grain size	Shear stress	Grain size
526	0.030	Coarse sand	0.115	Fine grvl	0.003	Fine sand
700	0.042	Coarse sand	0.133	Med grvl	0.005	Fine sand
1000	0.069	Fine grvl	0.166	Med grvl	0.008	Coarse sand
1167	0.077	Fine grvl	0.183	Med grvl	0.011	Coarse sand
1411	0.078	Fine grvl	0.208	Med grvl	0.014	Coarse sand
1900	0.129	Med grvl	0.253	Coarse grvl	0.023	Coarse sand
2503	0.144	Med grvl	0.304	Coarse grvl*	0.035	Coarse sand
4000	0.198	Med grvl	0.408	Coarse grvl*	0.067	Fine grvl
4427	0.170	Med grvl	0.419	Coarse grvl*	0.077	Fine grvl
4540	0.213	Med grvl	0.439	Coarse grvl*	0.080	Fine grvl
6114	0.222	Med grvl	0.506	Coarse grvl*	0.118	Fine grvl
6470	0.229	Med grvl	0.521	Coarse grvl*	0.127	Med grvl
10042	0.170	Med grvl	0.473	Coarse grvl*	0.194	Med grvl

Shear stress (T) for transport of uniform sediments						
Sediment	D (in)	T (lb/sf)	Note			
Cohesive compacted clay		0.3	e=0.40			
Medium silt	0.001	0.001				
Fine sand	0.005	0.003				
Coarse sand	0.02	0.006				
Fine gravel	0.16	0.06				
Medium gravel	0.3	0.12				
Coarse gravel	0.6	0.25				
Very coarse gravel	1.3	0.54				
Small cobble	2.5	1.1				
Large cobble	5	2.3				

Validation

What have we learned?

- SB3 pulse flows are not inundating backwater habitat.
- Very, very hard to tie biological responses to a single variable (flow).
- Large pulses do the "work" in the channel.
- Extensive mussel beds
- Water Quality is generally very good
- Mesohabitat diversity may increase with decreased flow
- Sites are not aggrading or degrading
- Fish have not returned to a similar baseline since 2015-16 flooding
- Much more analysis underway

Next Steps

- Continue Long-term monitoring
- Aggregate SB2 and SB3 data
- Biological sampling
- Additional inundation modeling
- SB3 Adaptive Management recommendations for 2021

Questions?

7

Contact | Connect

Cassidy Campbell

Senior Environment & Development Planner North Central Texas Council of Governments <u>ccampbell@nctcog.org</u> 817.608.2368

Tamara Cook

Senior Program Manager Environment and Development Department North Central Texas Council of Governments tcook@nctcog.org 817.695.9221

Edith Marvin

Director of Environment & Development North Central Texas Council of Governments <u>emarvin@nctcog.org</u> 817.695.9211

Facebook.com/nctcogenv

@nctcogenv

nctcogenv

youtube.com/user/nctcoged

EandD@nctcog.org

www nctcog.org/envir

