Energy Efficiency and Infrastructure Resilience

NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS

AUGUST 28, 2019

North Central Texas Council of Governments

Texas Energy Consumption by End-User Sector, 2017

- Texas produces more electricity than any other state.
- Texas leads the nation in windpowered generation and produced one-fourth of all the U.S. wind powered electricity in 2017.
 Texas is the largest energyproducing state and the largest energy-consuming state in the nation.

Electric Reliability Council of Texas Projected Peak Demand

ERCOT schedules power on an electric grid that connects more than 46,500 miles of transmission lines and 650+ generation units.

https://youtu.be/9yKRz08buaA

Public Utility Commission of Texas 1701 N. Congress, P.O. Box 13326, Austin, TX 78711-3326 Fax 512-936-7003

News Release August 13, 2019 Contact: Andrew Barlow [512-936-7048]

Public Utility Commission Urges Electricity Conservation

Austin, TX – The Public Utility Commission of Texas (PUC) urges Texans to conserve electricity this afternoon as record electricity demand meets higher than normal temperatures.

"When the energy demands of our state's steadily growing population and booming economy intersect with hot summer temperatures, the supply of power can get a little tight, so we're calling on Texans to help moderate demand for electricity with a few simple choices during the late afternoon hours this week," said DeAnn Walker, Chairman of the Public Utility Commission of Texas.

The PUC advises residential and business customers alike to reduce their electricity usage with simple adjustments like bumping air conditioning thermostats up at least two degrees and turning off unnecessary lighting. Customers are also asked to wait until after sunset to run dishwashing and laundry appliances.

Threats - Heat Tuesday, August 13, 2019

- Electricity demand hit an all-time high of 74,531 megawatts as people blasted their air conditioners on Monday afternoon and totaled 74,310 megawatts at 4:34 p.m. local time Tuesday, according to ERCOT.
- Temperatures peaked at 103 degrees.
- "Extreme heat across the ERCOT region will continue to result in high loads," ERCOT said in a statement.
 "We may set another new record today."

Power blows past \$9,000 cap in Texas as heat triggers emergency

Bloomberg

Christopher Martin and Naureen S. Malik 8/13/2019

Electricity prices briefly surged past a \$9,000 a megawatt-hour price cap in Texas as extreme heat sent power demand skyrocketing and forced the state's grid operator to declare an emergency.

As temperatures in Dallas climbed to 103 degrees Fahrenheit (39 Celsius), the Electric Reliability Council of Texas issued an emergency alert, calling on all power plants to ramp up and asking customers to conserve. At one point on

https://www.msn.com/en-us/money/markets/power-blows-pastdollar9000-cap-in-texas-as-heat-triggers-emergency/ar-AAFL62t

BRIEF

ERCOT calls 2 energy emergencies in one week, 3rd in 5 years

https://www.utilitydive.com/news/ercot-calls-2nd-energy-emergency-thisweek-3rd-in-5-years/561065/

DX

Threats - Heat Urban Heat Island Effect

"The ramifications of urban heat adversely affect public health, longevity of infrastructure, public opinion, and our economy. With rising temperatures come higher costs for energy and a threat to our energy supply."

- Dallas Urban Heat Island Mitigation Study Website https://www.texastrees.org/projects/dallasurban-heat-island-mitigation-study/

http://www.dallascitynews.net/dallas-urban-heat-island-effect-reportreleased-texas-trees-foundation

Dallas Urban Heat Island Effect report released by Texas Trees Foundation

Dallas is hot, and getting hotter. The Texas Trees Foundation's findings in the 2017 Dallas Urban Heat Island Effect report show how cities affect heat waves. Surfaces like rooftops, parking lots and streets make up 35 percent of the city. In urban areas, these retain heat, making the area up to 15 degrees warmer than in rural areas. The Foundation's study revealed Dallas County is heating up quickly, and that planting trees can help reduce the heat and improve the health of community

members. DFW Weather: Heat Advisory Continues, MedStar Responds Rising temperature: **To Dozens Of Heat-Related Calls** average low of 80 fc

August 12, 2019 at 11:35 am Filed Under: DFW News, DFW Weather, heat, heat advisory, Hot Weather, MedStar, North Texas, Summer

The Texas Trees Fou and help prevent th residential building:

1-3 Bdrm Apartments In

Plano

Threats – Cyber Attacks

SECURITY

Experts assess damage after first cyberattack on U.S. grid

Blake Sobczak, E&E News reporter Energywire: Monday, May 6, 2019

Reports of an unprecedented grid "cyber event" caused a stir last week in power sector and cybersecurity circles. lan Muttoo/Flickr

Last week, the U.S. power sector marked a sober milestone: an anonymous Western utility became the first to report a malicious "cyber event" that disrupted grid operations.

The hack itself occurred two months ago, on March 5, when a "denial-of-service" attack disabled Cisco Adaptive Security Appliance devices ringing power grid control systems in Utah, Wyoming https://www.eenews.net/stories/1060281821

Hackers can interfere with everyday efforts to keep the lights on, pan denim/Shutterstock.com

Email

Twitter

Hackers taking down the U.S. electricity grid may sound like a plot

- ripped from a Bruce Willis action movie, but the Department of 21
- Homeland Security has recently disclosed new details about the extent to f Facebook 59 which Russia has infiltrated "critical infrastructure" like American power in LinkedIn plants, water facilities and gas pipelines. Print

Autho

Theodore J. Kury Director of Energy Studies Iniversity of Florida

Disclosure statement

This hacking is similar to the 2015 and 2016 attacks on Ukraine's grid. While DHS has raised the number of the Russian utility-hacking

Theodore Kury directs of Energy Studies at the University of Florida's Public Utility Research

https://theconversation.com/russians-hacked-into-americaselectric-grid-heres-why-securing-it-is-hard-94279

Generic Interdependency Among Critical Infrastructure Sectors

	(Sub)sector Receiving the Service					
(Sub)sector Generating the Service	ONG	Electricity	Transportation	Water	Communication	
ONG		Fuel to operate power plant motors and generators	Fuel to operate transport vehicles	Fuel to operate pumps and treatment	Fuel to maintain temperatures for equipment; fuel for backup power	
Electricity	Electricity for extraction and transport (pumps, generators)		Power for overhead transit lines	Electric power to operate pumps and treatment	Energy to run cell towers and other transmission equipment	
Transportation	Delivery of supplies and workers	Delivery of supplies and workers		Delivery of supplies and workers	Delivery of supplies and workers	
Water	Production water	Cooling and production water	Water for vehicular operation; cleaning		Water for equipment and cleaning	
Communication	Breakage and leak detection and remote control of operations	Detection and maintenance of operations and electric transmission	Identification and location of disabled vehicles, rails and roads; the provision of user service information	Detection and control of water supply and quality		
		Source	ce: IEEE			

Planning a Resilient Power Sector

- The power system is at risk from an array of natural, technological, and man-made threats that can cause everything from power interruption to chronic undersupply.
 - Natural: long-term climatic changes, such as variations in precipitation patterns and changes in air and water temperatures, as well as severe weather events, such as storms, flooding, and storm surges
 - **Technological:** unpredicted equipment and infrastructure failures
 - Human-caused: Accidents and malicious events
- Impacts from these threats include, but are not limited to:
 - Potential fuel supply shortages for transportation and energy generation,
 - Physical infrastructure damage (dam failure, faulty system equipment, etc.)
 - Shifts in energy demand
 - Disruption of electricity supply to the end user
 - System operations and targeting power control systems, generators, or critical data infrastructure
- It is critical for policymakers, planners, and system operators to safeguard their systems and plan for and invest in the improved resilience of the power sector
- Planning for power sector resilience can happen at different geographic scales (local, national, or regional) and should be incorporated into existing power sector planning and policies to ensure effectiveness

The Energy-Resilient City

Learn about the different ways a city can incorporate resilience:

community services and local response.

duration of the event.

Example Electrical Energy Infrastructure Performance Goals

- Provides functional categories within the electric power infrastructure system (generation, transmission, and distribution)
- Community stakeholders, including representatives from the utility providers, need to work together to determine the functions needed during recovery and the performance goals tailored to their community needs and energy systems.

NIST, Community Resilience Planning Guide for Buildings and Infrastructure Systems, Volume II

https://nvlpubs.nist.gov/nistpubs/SpecialP ublications/NIST.SP.1190v2.pdf

	Support Needed ⁴	Design Hazard Performance								
		Phase 1		Phase 2			Phase 3			
Communications Infrastructure		Short-Term		m	Intermediate		Long-Term			
			Days	1.0		Weeks	0.40		Months	
Denne Electric Diditates		0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Community Owned or Operated Bully Concretion										
Generation Requiring Fuel Transport (Coal Gas							1			
Oil fired)										
In Place Fueled Generation (Hydro, solar, wind,										
wave, compressed air)										
Storage (Thermal, Chemical, Mechanical)										
Community Owned or Operated Distributed Ger	neration									
Generation Requiring Fuel Transport (Coal, Gas,										
Oil fired)										
In Place Fueled Generation (Hydro, solar, wind,										
wave, compressed air)										
Storage (Thermal, Chemical, Mechanical)	.• \									
I ransmission and Distribution (including Substa	tions)									
United Facilities			-				1		-	
Operations Centers										
Debris / recycling centers/ Related lifeline										
systems										
Emergency Housing										
Public Shelters / Nursing Homes / Food										
Distribution Centers										
Emergency shelter for response / recovery										
workforce/ Key Commercial and Finance										
Housing/Neighborhood							•		-	
Essential city services facilities / schools /										
Medical offices										
Puildings/space for social services (a.g. shild										
services) and prosecution activities										
Community Recovery										
Commercial and industrial businesses / Non-										
emergency city services										
Residential housing restoration										
<u> </u>										

Energy Efficiency's Role in Increasing Resilience

Energy efficiency can be a core strategy to reduce risks and enhance the resilience of the communities that energy systems serve.

Table ES2. Energy efficiency measures that reduce vulnerability and increase capacity to cope

Table ES1. Resilience benefits of energy efficiency

Benefit type	Energy efficiency outcome	Resilience benefit	Energy efficiency measure	Resilience implications		
Emergency response and recovery -	Reduced electric demand	Increased reliability during times of stress on electric system and increased ability to respond to system emergencies	СНР	Provides backup power, allows facilities receiving backup power to double as shelter for displaced residents, reduces overall net emissions, and potentially increases cost savings		
	Backup power supply from combined heat and power (CHP) and microgrids	Ability to maintain energy supply during emergency or disruption	Microgrids	May disconnect from grid during power outage, maintaining power supply; allows facilities receiving backup power to double as shelter for displaced residents; reduces overall net emissions; and potentially increases cost savings Multiple transportation modes that can be used during evacuations and everyday disruptions		
	Efficient buildings that maintain	Residents can shelter in place as long as buildings'				
	Multiple modes of transportation	Several travel options that can be used during	Transportation alternatives			
	and efficient vehicles	evacuations and disruptions	District on order outcome	Provides heating, cooling, and electricity using local energy sources and reduces peak power demand through thermal energy storage		
- Social and - economic	Local economic resources may	Stronger local economy that is less susceptible to	District energy systems			
	stay in the community	hazards and disruptions	Utility energy efficiency	Allows residents/tenants to shelter in place longer, reduces annual energy spending, and reduces overall net emissions. Can help		
	Reduced exposure to energy	Economy is better positioned to manage energy	programs			
	price volatility	are better able to plan for future.				
	Reduced spending on energy	Ability to spend income on other needs, increasing disposable income (especially important for low-income families)	Energy-efficient buildings	vulnerable populations avoid dangerous and occasionally life- threatening situations in which weather and economics present a dual threat		
	Improved indoor air quality and emission of fewer local	Fewer public health stressors	Green infrastructure	Reduces localized flooding due to storms, reduces energy demand, and reduces urban heat island (UHI) effect in cities and electricity demand		
	pollutants		Cool roofs and surfaces	Reduces UHI effect and electricity demand and reduces overall net emissions Increases economic development opportunities; provides transportation cost savings and reduces impacts of price volatility; and may improve air quality		
Climate mitigation – and adaptation	Reduced greenhouse gas	Mitigation of climate change				
	Cost-effective efficiency	More leeway to maximize investment in resilient redundancy measures, including adaptation	Transit-oriented development			
adaptation	investments	measures				

FOR MORE INFORMATION

Tamara Cook

Senior Program Manager Environment and Development Department (817) 695-9221 <u>tcook@nctcog.org</u>

Lori Clark

Program Manager Transportation Department (817) 695-9232 <u>Iclark@nctcog.org</u>

https://www.nctcog.org/envir/natural-resources/energy-efficiency

North Central Texas Council of Governments