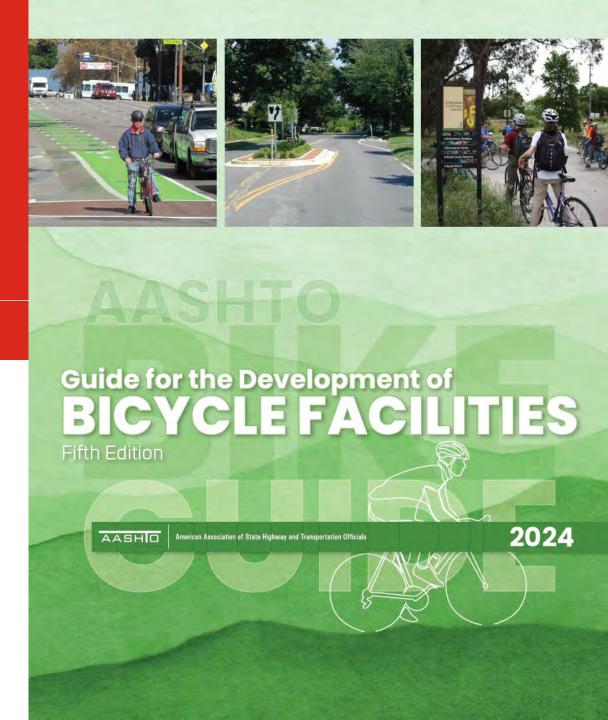
North Central Texas Council of Governments

BICYCLE AND PEDESTRIAN ADVISORY COMMITTEE

North Central Texas Council of Governments 616 Six Flags Dr. Arlington TX 76011 February 19, 2025 2:00-4:00 pm

2:00 – 2:05 (5 min)	1. Welcome Discussion of November 20, 2024, meeting summary	Anthony White, BPAC Chair, TxDOT Fort Worth District	
2:05 – 2:20 (15 min)	2. Highlights from the AASHTO Bike Guide 5 th Edition (Dec 2024)	Jeremy Chrzan, Toole Design	
2:20 - 2:30 (10 min)	3. Advancing Implementation of the Safe System Approach	Millie Hayes, Federal Highway Administration	
2:30 - 2:40 (10 min)	4. Town of Prosper Crosswalk and School Zone Policy	Hulon Webb, Town of Prosper and Josh Smith, Lee Engineering	
	5. Local Community Updates		
2:40 - 2:55 (15 min)	a) Trinity Metro Bike Share Program Re-Launch – Shawn Tubre, Trinity Metro	Various Community and	
(1011111)	b) Upcoming Events & Training – Daniel Herrig, BPAC Vice-Chair, City of Richardson	BPAC Members	
	6. NCTCOG and TxDOT Updates		
	a) Regional Bicycle Safety Action Plan - Catherine Richardson		
	b) Potential Cooperative Purchasing Program for Bikeway Facilities – Daniel Snyder		
2:55 – 3:25 (30 min)	c) Public Comments About Pedestrian and Bicycle Facilities Received Through NCTCOG's Map Your Experience and TxDOT Public Hearing Comments – Daniel Snyder	Various NCTCOG and TxDOT Staff	
	d) Update of Statewide District Public Hearing and 2025 Statewide TA Call for Projects – Rachael Twiggs		
	e) Metropolitan Transportation Plan Outreach – Gwen Dorko		
3:25- 3:55 (30 min)	7. BPAC Member Introductions	All BPAC Members	
3:55 – 4:00 (5 min)	8. Other Business This item provides committee members an opportunity to bring items of interest before the Committee or propose future agenda items.	Anthony White, BPAC Chair, TxDOT Fort Worth District	

Next BPAC Meeting

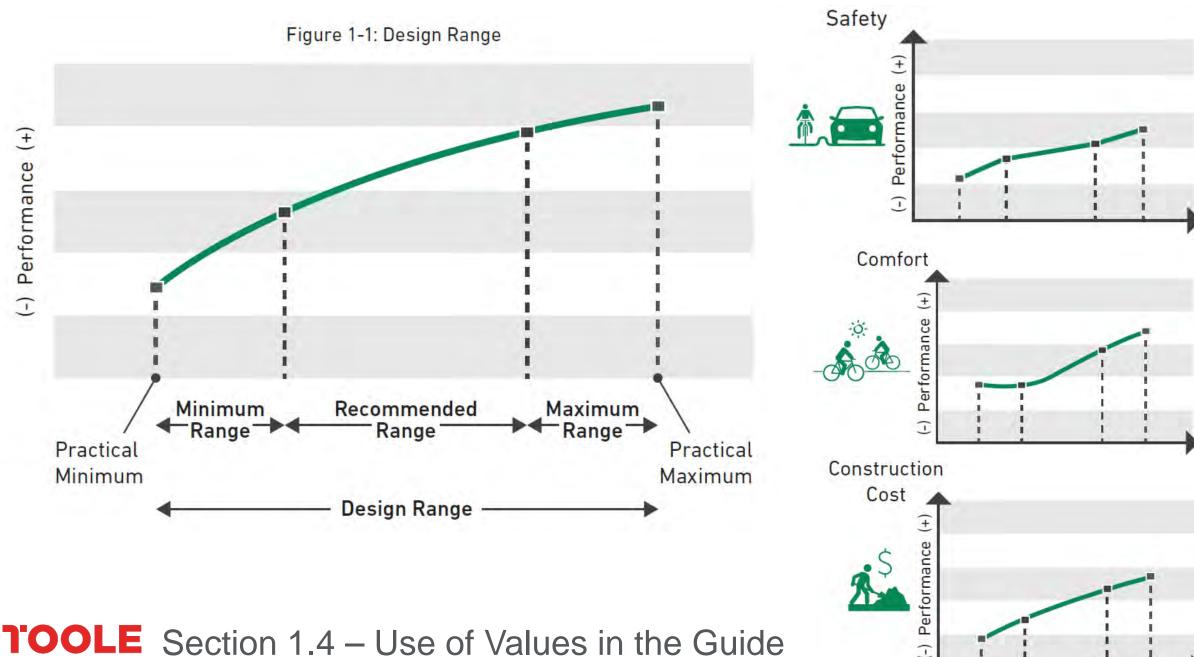

The next meeting of the Bicycle and Pedestrian Advisory Committee is scheduled for May 21, 2025, from 2:00-4:00pm at NCTCOG in the Transportation Council Room.

2024 AASHTO Bike Guide 5th Edition

Bicycle & Pedestrian Advisory Committee North Central Texas Council of Governments February 19, 2025

Jeremy Chrzan, PE, PTOE Multimodal Design Practice Lead

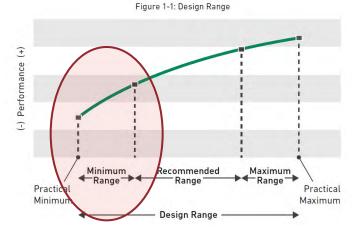
2012 Guide compared to 2024 Guide


2012 Guide	2024 Guide	Notable Changes of 2024 compared to 2012
Chapter 1. Introduction	1. Introduction	REWRITE with new discussion of design range concept
Chapter 3. Bicycle Operation and Safety	2. Bicycle Operation & Safety	REWRITE of former Chapter 3
Chapter 2. Bicycle Planning	3. Bicycle Planning	REWRITE and NEW CONTENT added to former Chapter 2
	4. Facility Selection	NEW CHAPTER with a few items carried from Chapter 2
	5. Elements of Design	NEW CHAPTER with some content pulled from Chapters 4 and 5
Chapter 5. Design of Shared Use Paths	6. Shared Use Paths	REVISION of Chapter 5
	7. Separated Bike Lanes	NEW CHAPTER with new content
	8. Bicycle Boulevards	NEW CHAPTER with new content
Chapter 4. Design of On-Road Facilities	9. Bike Lanes & Shared Lanes	REVISION of Chapter 4
	10. Traffic Signals and Active Warning Devices	NEW CHAPTER with new content
	11. Roundabouts, Interchanges, and Alternative Intersections	NEW CHAPTER with new content
	12. Rural Area Bikeways	NEW CHAPTER with some content pulled from Chapter 4
	13. Structures	NEW CHAPTER with some content pulled from Chapter 5
	14. Wayfinding	NEW CHAPTER with some content pulled from Chapter 4
Chapter 7. Maintenance and Operations	15. Maintenance & Operations	REVISION of chapter 7
Chapter 6. Bicycle Parking Facilities	16. Parking, Bike Share, & End of Trip Facilities	REVISION of chapter 6

Chapter 1 – Introduction

- 1.1 Design Imperative for Bicycle Facilities
- 1.2 Purpose
- 1.3 Design Flexibility

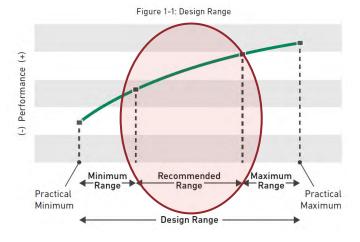
- 1.4 Use of Values in the Guide
- 1.5 Scope
- 1.6 Relationship to other Design Guides and Manuals
- 1.7 Structure of this Guide
- 1.8 Definitions


DESIGN

Section 1.4 – Use of Values in the Guide

1.4.1. Minimum Range

The use of values within the minimum range should be minimized because they are likely to diminish mobility, safety, and comfort


Section 1.4 – Use of Values in the Guide

1.4.2. Recommended Values Range

The use of values within the recommended range should be chosen to maximize mobility, safety and comfort benefits for bicyclists as well as other users.

These values were determined by research or established best practice.

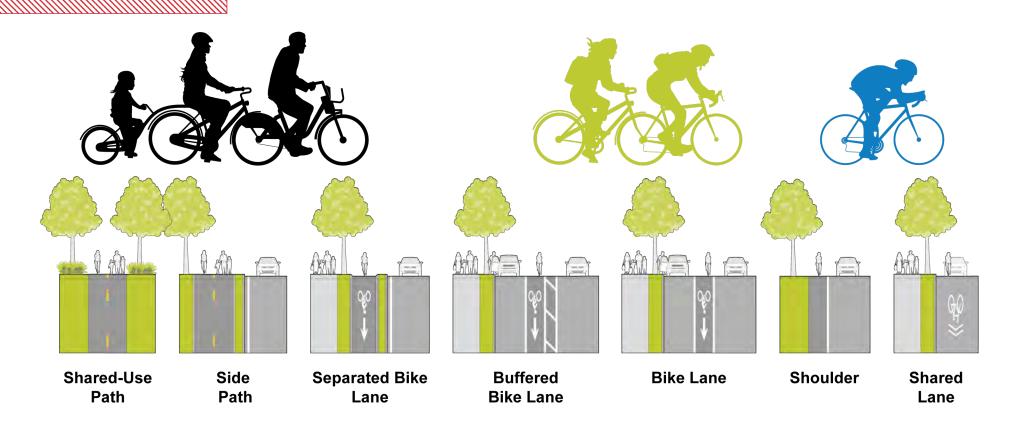
Experimental

9.8. Advisory Bicycle Lanes (Experimental)

Advisory bicycle lanes are continuously-dotted bicycle lanes which permit motorists to temporarily enter the bicycle lane, allowing opposing motor vehicle traffic sufficient space to pass (see Figures 9-15 and 9-16). They are an experimental design treatment for streets with lower traffic speeds and volumes where it is not feasible to provide standard-width travel lanes and bicycle lanes. They are designed to improve bicyclist comfort while also providing a traffic calming benefit. This is the same procedure for motorists operating on yield streets where motorists must move to the right side of the road, into unoccupied parking spaces or driveways, to permit oncoming traffic to pass (see Section 8.4.1).

Figure 9-15: Example of an Advisory Bicycle Lane in Alexandria, VA

Where advisory bicycle lanes are installed, they should include bicycle lane signs (R3-17) and bicycle lane symbol pavement markings. The placement of the signs and bicycle lane symbols should follow guidance for bicycle lanes. Experimental approval from FHWA is required to use this traffic control treatment. See Section 1.6.1 for guidance on requests to experiment.


Advisory shoulders are a similar treatment used in locations where sidewalks are not provided. Bicycle symbols are omitted to allow pedestrians to share the shoulder space with bicyclists. Chapter 12 provides design guidance for advisory shoulders.

Chapter 2 - Bicycle Operation and Safety

- 2.1. Introduction
- 2.2 Safety of Bikeways and Shared Lanes
- 2.3. Bicyclist Design User Profiles
- 2.4. Bicyclist Safety and Performance Characteristics
- 2.5. Design Vehicle and Bicyclist Operating Criteria
- 2.6. Operating Principles for Bicyclists
- 2.7. Guiding Principles for Bicyclist Safety

Comfort Increases with Separation

2.3. Bicyclist Design User Profiles

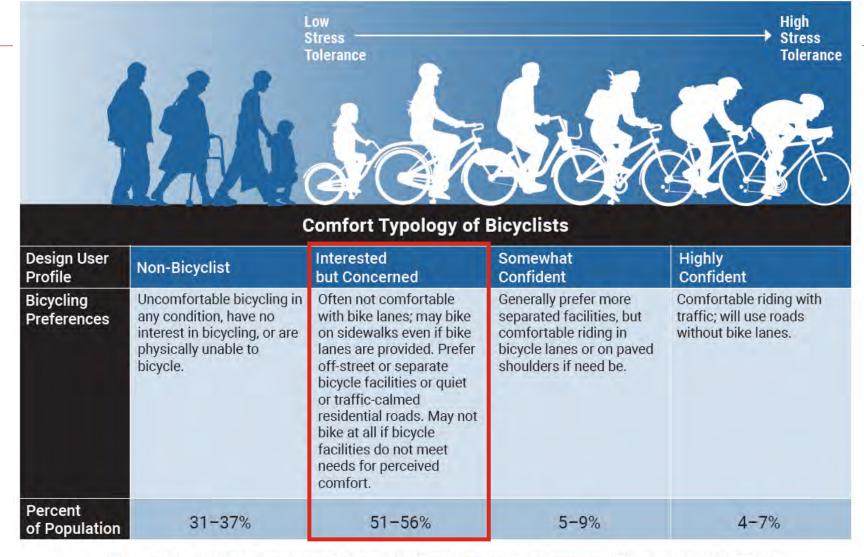


Figure 2-2: Comfort Typology of Bicyclists (See Chapter 2 References: Dill and McNeill, 2016)

2.7. Guiding Principles for Bicyclist Safety

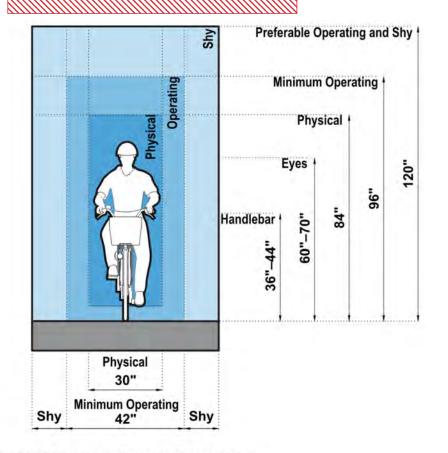


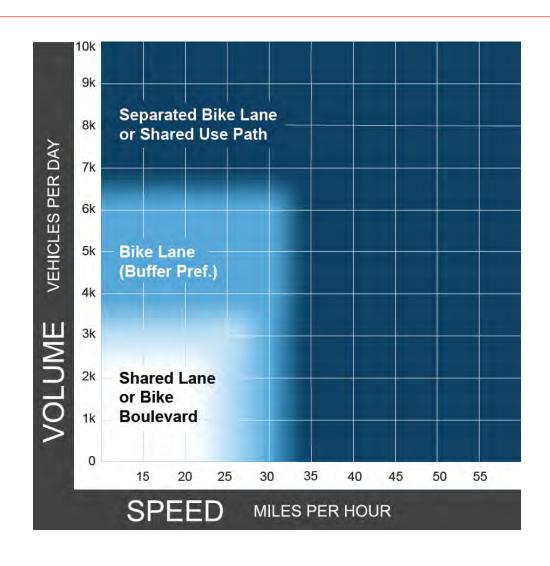
Figure 2-5: Typical Adult Bicyclist Operating Space

- Reduced injury risk compared to standard bike lanes and shared lanes (Lusk et al., 2013; Lusk et al., 2011; NYCDOT, 2014; Winters et al., 2013)
- SBL preferred over striped or shared lanes by both cyclists and motorists (Monsere et al., 2014; Monsere et al., 2012; Sanders, 2014)
- One-way generally safer than two-way (Schepers et al., 2011; Thomas & DeRobertis, 2013)
- Two-way SBLs on one-way roads, preferable on right side

(Schepers et al., 2011; Zangenehpour et al., 2015)

Chapter 4 - Guidance for Choosing a Bikeway Type

- 4.1 Introduction
- 4.2 Project Performance Goals and Objectives
- 4.3 Selecting the Preferred Bikeway Type
- 4.4 Strategies to Achieve the Preferred (or Next Best) Design
- 4.5 Evaluating Design Alternatives and Trade-offs to Select a Bikeway

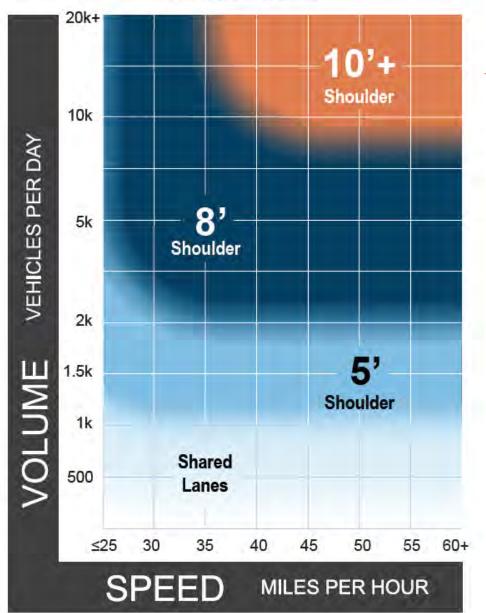

Section 4.3.1 – Streets in Urban, Suburban and Rural Town Contexts

Identifies the **preferred** bikeway type assuming:

<u>Design User</u> = Interested but Concerned bicyclist

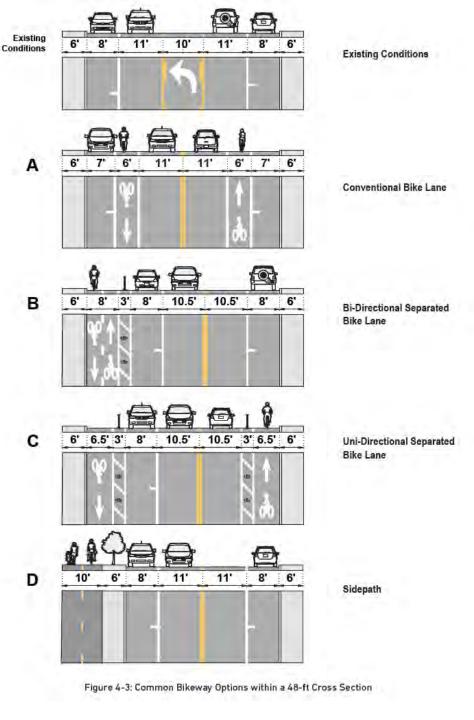
Analysis = Level of Traffic Stress

Section 4.3.2 – Rural Roadways


Identifies the **preferred** shoulder width assuming:

Design User = Confident bicyclist

Analysis = Bicycle LOS


Figure 4-2: Preferred Paved Shoulder Widths for Rural Roadways to Accommodate Highly Confident or Somewhat Confident Bicyclists

4.4.2. Example Strategies for Constrained Rights-of-Way

- 4.4.2.1 Traffic Analysis Approach
- 4.4.2.2 Narrowing Travel Lanes
- 4.4.2.3 Removing Travel Lanes
- 4.4.2.4 Reorganizing Street Space
- 4.4.2.5 Making Changes to On-Street Parking
- 4.4.2.6 Reducing Bikeway Widths
- 4.4.2.7 Reducing Motor Vehicle Traffic Volumes and Speeds
- 4.5.2. Example of Trade-off Considerations Between Common Bikeway Types


4.5.3. Selecting the Next Best Facility When the Preferred Bikeway Is Not Feasible

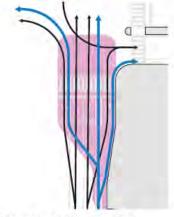
Alternative Route

If no other design improvements are feasible, it is necessary to consider alternative parallel routes.

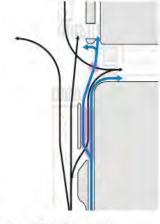
Research indicates that for an alternative lowstress route to be viable, the increase in trip length should be less than 30 percent.

Broach, J., Dill, J., and J., Gliebe. Where Do Cyclists Ride? A Route Choice Model Developed with Revealed Preference GPS Data

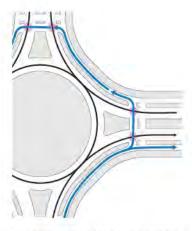
Chapter 5 – Elements of Design

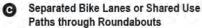

5.1 Introduction

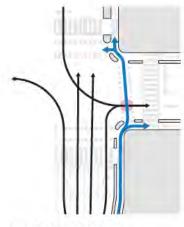
- 5.2 Design User
- 5.3 Design Speed
- 5.4 Understanding Assignment of Right of Way
- 5.5 Sight Distance
- 5.6 Surface and Geometric Design Elements
- 5.7 Characteristics of Intersections
- 5.8 Intersection Design Objectives
- 5.9 Evaluating Bicycle and Pedestrian Roadway Crossings


- 5.10 Geometric Design Treatments to Improve Intersection Safety
- 5.11 Warning and Regulatory Traffic Control Devices
- 5.12 Pavement Markings
- 5.13 Bicycle Travel Near Rail Lines
- 5.14 Other Design Features

5.8. Intersection Design Objectives


- 5.8.1. Minimize Exposure to Conflicts
- 5.8.2. Reduce Speeds at Conflict Points
- 5.8.3. Communicate Right-of-Way Priority
- 5.8.4. Providing Adequate Sight Distance
- 5.8.5. Transitions to Other Facilities
- 5.8.6. Accommodating Persons with Disabilities




 Conventional Bike Lanes and Shared Lanes

Separated Bike Lanes with Mixing Zones^a

Protected Intersections^a

Legend

bicycle travel path

motorist travel path

Figure 5-13: Comparison of Bicyclist Exposure to Motor Vehicles at Intersections

^a Left turn conflicts not depicted for two-stage bicyclist left turns

5.9.2.3 Apply Countermeasures to Improve Yielding

Tier 1: Signing & Markings

Tier 2: RRFB & Geometric Improvements

Tier 3: PHB, Signal, or Grade Separation

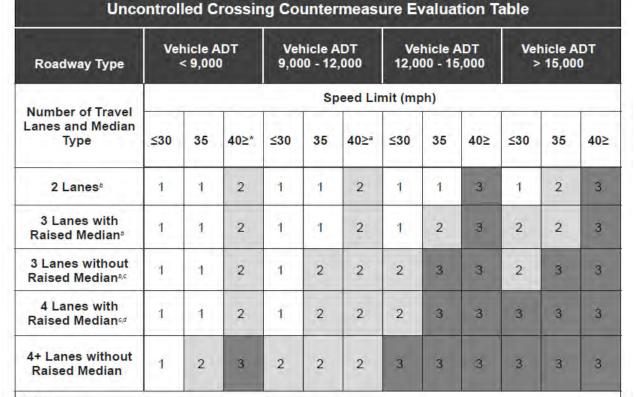


Table 5-15: Uncontrolled Crossing Evaluation

Notes:

^a Where the speed limit exceeds 40 mph, Tier 3 should be considered.

^b 1 lane in each direction.

FRaised medians must be at least 6 ft wide to serve pedestrians. See Figure 2-4 for different bicycle lengths to serve bicyclists. Where median width is less than these values, review category of 4+ lanes without raised median.

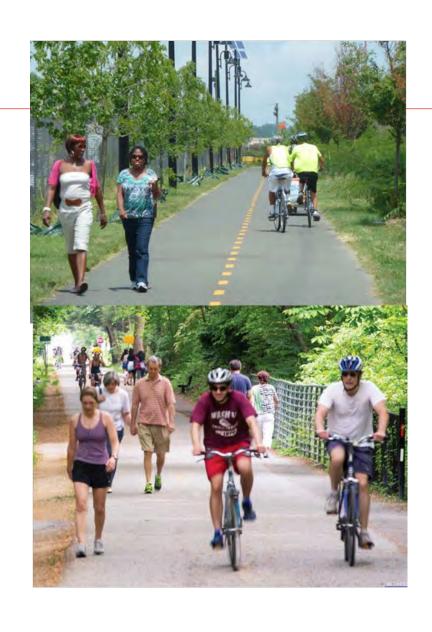
^d 2 lanes in each direction.

Chapter 6 – Shared Use Paths

6.1 Introduction Shared Use Path Users 6.2 6.3 Side Path Considerations 6.4 Path Width Considerations 6.5 Design Speed 6.6 General Design Considerations Shared Use Path Intersections and Transitions 6.7 6.8 Design Considerations to Promote Personal Security 6.9 Shared Use Path Entrance and Wayside Amenities

Chapter 6 SUP Width (Two-way)

6.4.3. Recommended Shared Use Path Widths


Table 6-3: Recommended Shared Use Path Widths* to Achieve SUP LOS "C"

	Shared Use Path Operating Widths and Operational Lanes*									
SUPLOS "C" Peak Hour Volumes	Recommended Operational Lanes	Practical Minimum	Recommended Lower Limit	Recommended Upper Limit	Practical Maximum					
150 to 300	2	8 ft	10 ft	12 ft	13 ft					
300 to 500	3	11 ft	12 ft	15 ft	16 ft					
500 to >600	4	15 ft	16 ft	20 ft	None					

^{*}Typical Mode Split is 55% adult bicyclists, 20% pedestrians, 10% runners, 10% in-line skaters, and 5% child bicyclists

11' wide provides three (3) operational lanes

6.4.2. Shared Use Path Level of Service

Table 6-1: Shared Use Path Operating Conditions Based on Level of Service Criteria

Shared Use Path Level of Service (SUPLOS) and Operating Conditions **SUPLOS Peak Operating Conditions** A significant ability to absorb more users across all modes is available. A. Excellent A moderate ability to absorb more users across all modes is available. B. Good Path is close to functional capacity with minimal ability to absorb more C. Fair users. Path is at its functional capacity. Additional users will create operational D. Poor and safety problems. Path operating beyond its functional capacity resulting in conflicts and E. Very Poor people avoiding the path. Path operating beyond functional capacity resulting in significant F. Failing conflicts and people avoiding the path.

Table 6-2: Shared Use Path Level of Service Look-Up Table, Typical Mode Split

Shared Use Path Level of Service Look-Up Table, Typical Mode Split*

Shared Use Path Peak Hour	Shared Use Path Width (ft)										
Volume	8	10	11	12	14	15	16	18	20	≤ 25	
50	В	В	В	В	В	Α	Α	Α	А	Α	
100	D	С	В	В	В	Α	Α	A	Α	Α	
150	D	C	В	В	В	Α	В	Α	Α	Α	
200	D	D	С	В	В	Α	В	Α	Α	Α	
300	E	D	С	С	С	В	В	В	В	A	
400	F	E	D	D	С	С	С	В	В	A	
500	F	F	D	D	D	С	С	С	С	Α	
600	F	F	Е	Е	Е	D	D	С	С	А	
800	F	F	F	F	F	Ε	Ε	Е	E	Α	
1,000	F	F	F	F	F	Ε	F	F	F	А	
≥ 1,200	F	F	F	F	F	F	F	F	F	Α	

*Assumptions:

- Mode split is 55 percent adult bicyclists, 20 percent pedestrians, 10 percent runners, 10 percent in-line skaters, and 5 percent child bicyclists.
- An equal number of trail users travel in each direction (the model uses a 50 percent–50 percent directional split).
- Trail volume represents the actual number of users counted in the field (the model adjusts this volume based on a peak hour factor of 0.85).
- 4. Trail has a centerline.

6.4.4. Separation of Pedestrians and Bicyclists

- 6.4.4.1 Land Use Considerations Where Separation is Desirable
- 6.4.4.2 Volume Thresholds Where Separation is Desirable

Should be considered when:

- Level of Service is projected to be at or below level "C."
- Pedestrians can reasonably be anticipated to be 30% or more of the volume
- 6.4.4.3 Separation Strategies
- 6.4.4.4 Accessibility Considerations

Figure 6-3: Burke-Gilman Shared Use Path (2008) and Separated Paths (2021), Seattle, WA

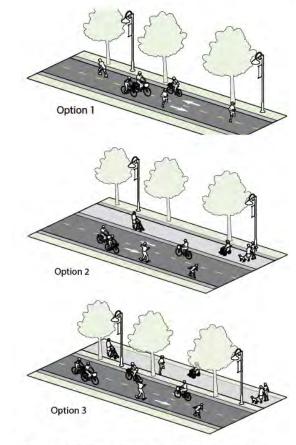


Figure 6-4: Options for Separating Bicyclists and Other Wheeled Users from Pedestrians

6.6. General Design Considerations

6.6.1. Shy Distance, Clearances, and Shoulders

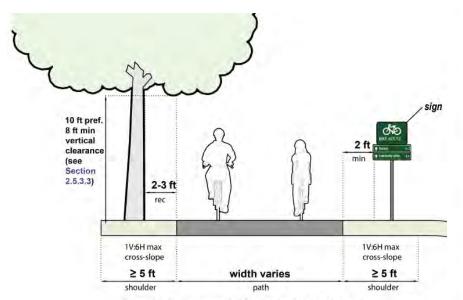


Figure 6-5: Shoulders and Shy Distance on Shared Use Paths

6.6.3. Horizontal Alignment

Table 6-5: Minimum Radii for Horizontal Curves at 20-Degree Lean Angles

Design Speed (mph)	Minimum Radii (ft) for Horizontal Curves at 20-Degree Lean Angles					
8	12					
10	18					
12	27					
14	36 47					
16						
18	60					
20	74					
25	115					
30	166					

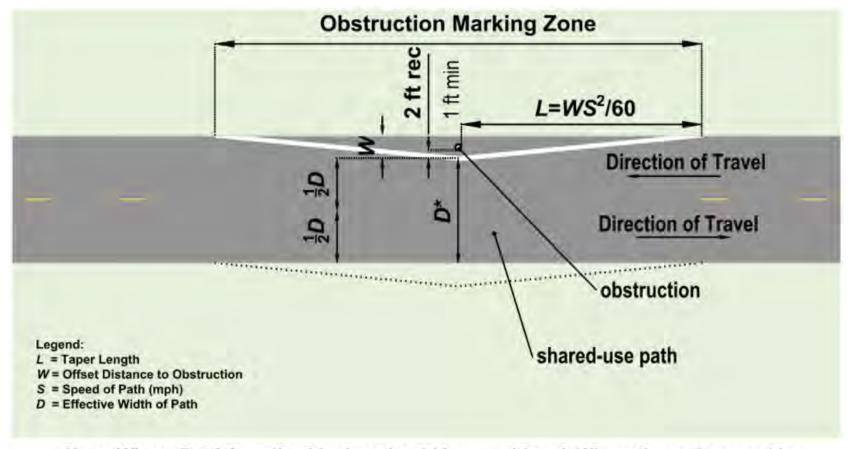

6.6.4. Vertical Alignment

Table 6-8: Minimum Length of Crest Vertical Curve Based on Stopping Sight Distance

À				s	= Stop	ping S	Sight D	istance	e for fla	t grade	(ft)*			
(%)	40	60	80	100	120	140	160	180	200	220	240	260	280	3
2									17	57	97	137	177	2
3						25	65	105	145	185	225	265	307	3
4				9	49	89	129	169	209	253	301	353	409	4
5			7	47	87	127	167	211	261	316	376	441	512	5
6			32	72	112	154	201	254	313	379	451	530	614	7
7		11	51	91	132	179	234	296	366	442	526	818	716	1
8		24	64	104	150	205	267	338	418	505	602	706	819	6
9		35	75	117	168	230	301	381	470	589	677	794	921	1
10	3	43	84	131	188	250	334	423	522	032	752	883	1023	1
11	10	50	92	144	207	281	368	465	574	695	827	971	1126	1
12	16	56	100	157	226	307	401	508	627	750	902	1059	1228	3
13	21	61	109	170	244	333	434	550	679	821	978	3147	1331	,
14	25	66	117	183	263	358	468	.592	731	885	1053	1236	1433	15
15	29	70	125.	196	282	384	501	634	783	948	1128	1324	1535	1
16	32	75	134	200	301	409	535	677	836	1011	1203	1412	1638	9
17	35	80	142	222	320	435	568	719	888	1074	1278	1500	1740	0
18	37	85	150	235	338	461	602	761	940	1137	1354	1589	1842	2
19	40	89	159	248	357	486	635	804	992	1201	1429	1677	1945	2
20	42	94	167	261	376	512	668	B46	1044	1254	1504	1765	2047	2

6.6.9.3 Obstruction Markings

Note: Where $D \le 8$ ft, path widening should be considered. Where the path cannot be widened, the center line should not be marked within the limits, L.

6.7. Shared Use Path Intersections and Transitions

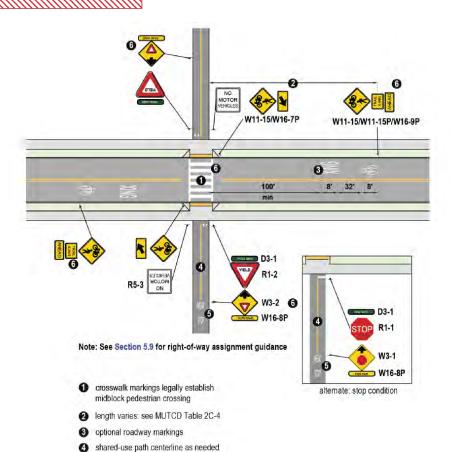
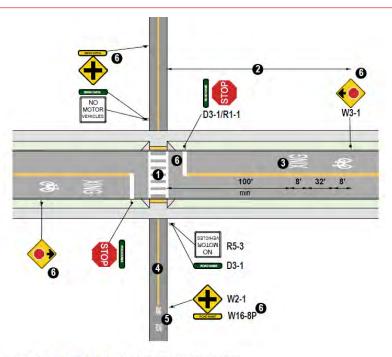


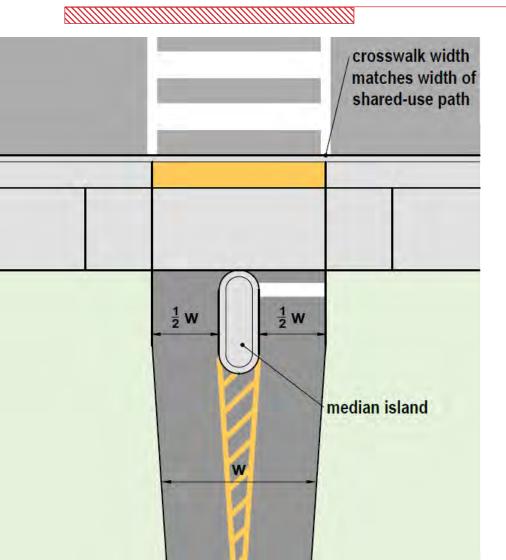
Figure 6-13: Shared Use Path Stops or Yields


6 optional pathway markings and advance

6 optional advance warning signs; these signs

are recommended where visibility to crossing

warning signage


is limited

Note: See Section 5.9 for right-of-way assignment guidance

- crosswalk markings legally establish midblock pedestrian crossing
- 2 length varies: see MUTCD Table 2C-3
- 3 optional roadway markings
- 4 shared-use path centerline as needed
- 6 optional pathway markings and signage
- optional advance warning signs; these signs are recommended where visibility to crossing is limited

6.7.8 – Restricting Motor Vehicles

Bollards are a last resort

- Post No Motor Vehicle signs
- Use different materials
- Use a center island at approaches
- Use targeted enforcement
- Consider flex posts before bollards
- Bollards must be retroreflective
- Must include markings to guide users around bollards

Chapter 7 – Separated Bike Lanes and Side Paths

- 7.1 Introduction
- 7.2 General Design Considerations
- 7.3 Bike Lane Zone
- 7.4 Street Buffer Zone

- 7.5 Sidewalk Buffer Zone
- 7.6 Consideration for Zone Widths in Constrained Locations
- 7.7 Utility Considerations
- 7.8 Landscaping Considerations
- 7.9 Separated Bikeway and Side Path Intersection Design
- 7.10 Transitions Between Facilities
- 7.11 Raised Bike Lanes

7.2. General Design Considerations

The cross section of a separated bike lane comprises three distinct zones (see Figure 7-1):

- 1 Bike lane—The bike lane is the space in which the bicyclist operates. It is located between the street buffer and the sidewalk buffer.
- 2 Street buffer—The street buffer separates the bike lane or side path from motor vehicle traffic.
- 3 Sidewalk buffer—The sidewalk buffer separates the bike lane from the sidewalk.

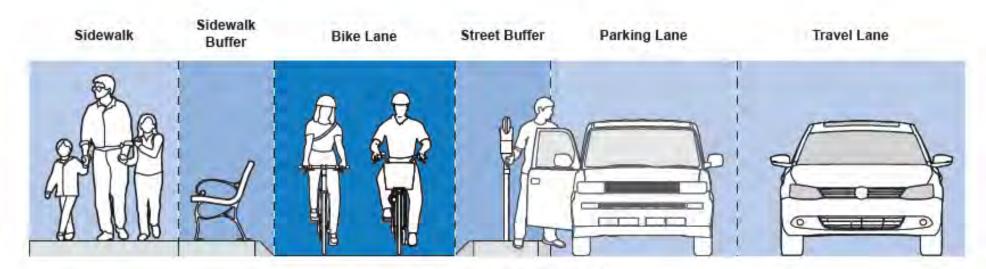
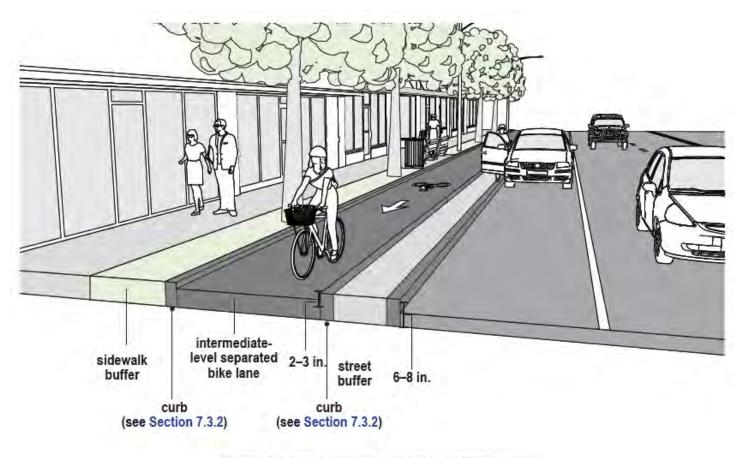
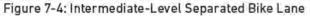


Figure 7-1: Separated Bike Lane Zones


7.2.2.3 Intermediate-Level Separated Bike Lanes


curb reveal of 2-3 in. below sidewalk elevation is recommended to"

- provide vertical separation to the adjacent sidewalk, and
- provide a detectable edge for pedestrians with vision disabilities

Figure 7-5: Curb Types for Separated Bike Lanes

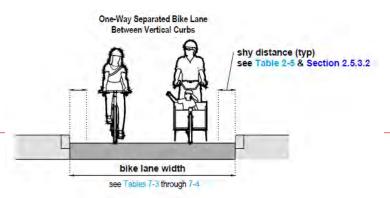
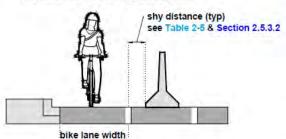

Section 7.3.4 – SBL Width (One-way)

Table 7-3: One-Way Separated Bike Lane Widths Based on Existing or Anticipated Volumes

2400	One-Way Separated Bike Lane Width (ft) Recommended Values							
Peak Hour Directional Bicyclist Volume	Between Vertical Curbs without Gutter	Adjacent to One Vertical Curb	Between Sloped Curb, at Sidewalk Level, or Adjacent to Curb with Gutter					
<150	6.5–8.5	6–8	5.5–7.5					
150-750	8.5–10	8–9.5	7.5–9					
>750	≥10	≥9.5	≥9					
Practical Minimum*	4.5	4	4					

^{*}Peak Hour Directional Bicyclist Volume not applicable



One-Way Separated Bike Lane Adjacent to One Vertical Curb and a Painted Buffer with Flexible Delineator Posts

One-Way Separated Bike Lane Adjacent to One Vertical Curb with Gutter and a Concrete Barrier

see Tables 7-3 through 7-4

Figure 7-7: Separated Bike Lane Width

7.7.1. Drainage and Stormwater Management

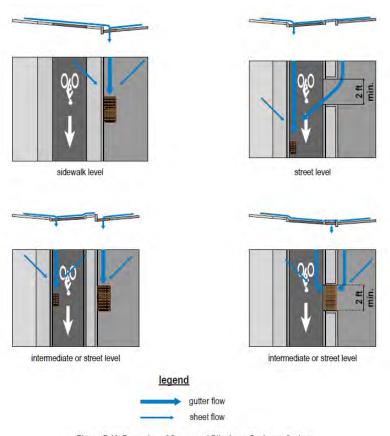
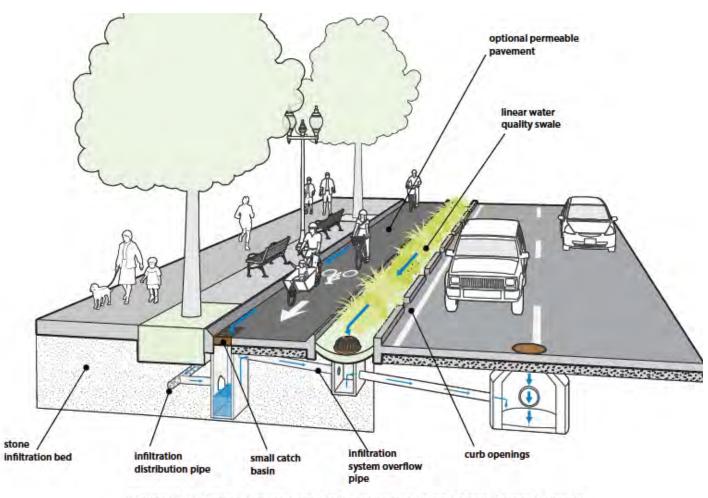
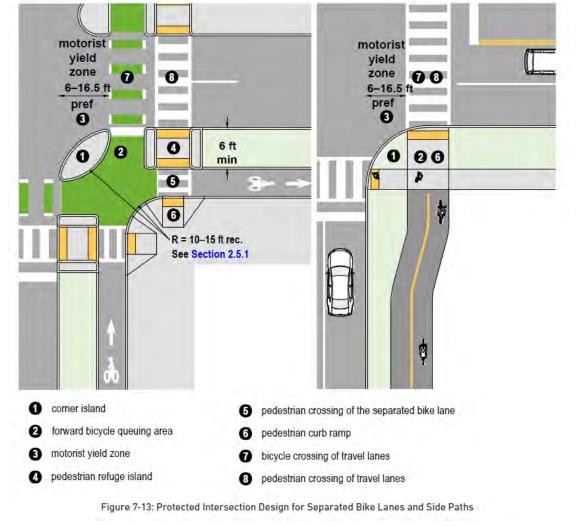
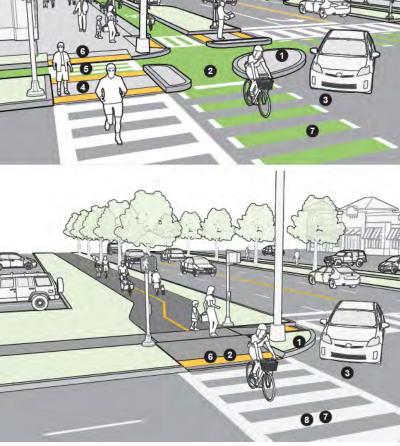


Figure 7-11: Examples of Separated Bike Lane Drainage Options

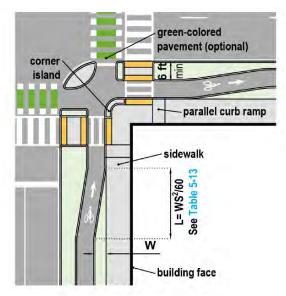




Figure 7-10: Green Stormwater Infrastructure in an Urban Street Context

7.9. Separated Bike Lane and Side Path Intersection Design

7.9.1. Minimizing Exposure to Conflicts

- 7.9.2. Reducing Speeds at Conflict Points
- 7.9.3. Transitions between Elevations
- 7.9.4. Right-of-Way Priority
- 7.9.5. Sight Distance
- 7.9.6. Restricting Motor Vehicles


7.9.7.1 Corner Island

Benefits:

- forward bicycle queuing area
- space for turning vehicles to wait
- reduces crossing distances
- reduces motorist turning speeds
- can reduce bicyclist speeds by adding deflection to the bike lane or side path

Figure 7-15: Corner Island with Flexible Delineator Posts (Source: Carl Sundstrom, PE, Office of Bicycle and Pedestrian Programs, New York City Department of Transportation)

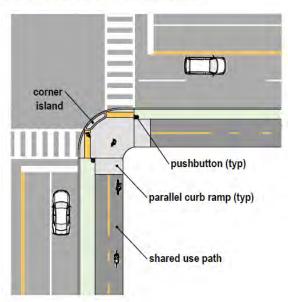
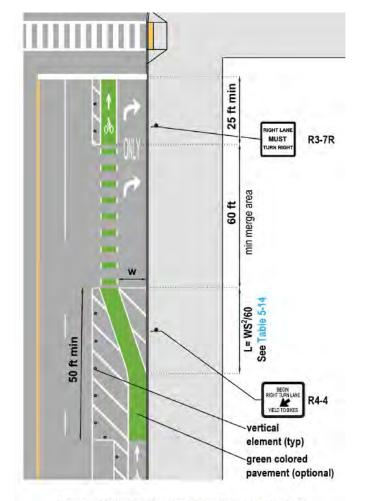


Figure 7-17: Side Path Curb Ramps at Constrained Intersection



7.9.9. Intersection Design with Mixing Zones NOTE: see NCHRP 15-73 for selection process

Reduce speeds of motor vehicles entering the merge point to 20 mph or less:

Minimize the length of the merge area

- Locate the merge point as close as practical to the intersection.
- Minimize the length of the storage portion of the turn lane.
- Provide a buffer and physical separation (e.g., flexible delineator posts) from the adjacent through lane after the merge area, if feasible.
- Highlight the conflict area with a green-colored pavement and dotted bike lane markings (see Figure 7-20), as necessary, or shared lane markings (see Figure 7-21).
- Raise the elevation of the turn lane at the start of the mixing zone.

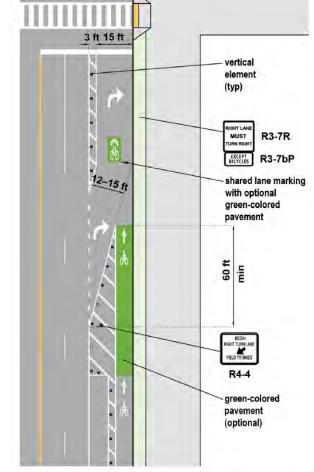
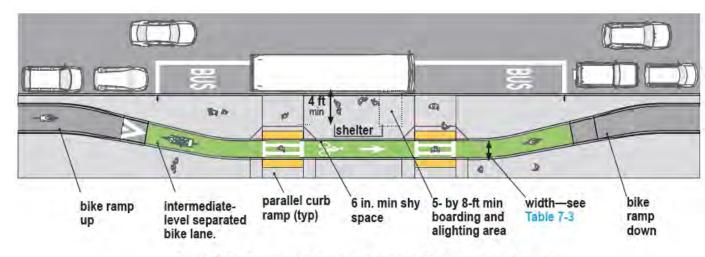
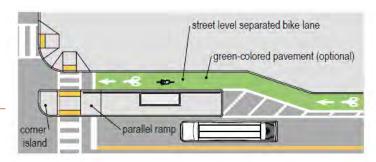
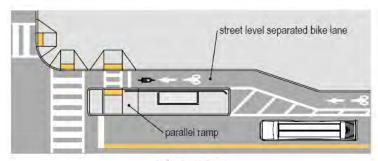
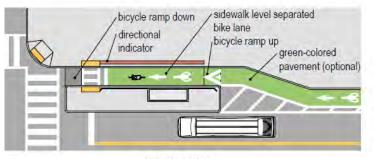


Figure 7-21: Angled Crossing Mixing Zone with Shared Lane

7.9.14. Transit Stops


Figure 7-26: Example Configuration: Floating Transit Stop (Mid-Block)

ALTERNATIVE 1

ALTERNATIVE 2

Note: Directional indicators are an emerging treatment. See Section 5.10.8 for recommendations for implementation.

ALTERNATIVE 3

Figure 7-31: Example Configurations: Floating Transit Stop (Near-Side)

Chapter 8 – Bicycle Boulevard Planning and Design

- 8.1 Introduction
- 8.2 Bicycle Boulevard Principles
- 8.3 Bicycle Boulevard Minimum Design Elements
- 8.4 Traffic Calming Strategies (Speed Management)
- 8.5 Traffic Diversion Strategies (Volume Management)
- 8.6 Traffic Control for Minor Street Crossings
- 8.7 Traffic Control for Major Street Crossings

Section 8.2 – Bicycle Boulevard Principles

Bicycle Boulevards are not just signed bike routes.

Principles that set them apart from local streets include:

- 8.2.1. Manage motorized through traffic volumes and speeds
- 8.2.2. Prioritize right-of-way at local street crossings
- 8.2.3. Provide safe and convenient crossings at major streets

Minimize Motorized Through Traffic Volumes and Speed Differential

	Hourly Traffic Volume	Daily Traffic Volume	Speed
Preferred	50 vehicles/hr	1,000 ADT	15 mph
Acceptable	75 vehicles/hr	2,000 ADT	20 mph
Maximum	100 vehicles/hr	3,000 ADT	25 mph

Major Street Crossings (opportunities per hour)

Preferred	120
Minimum	60

Chapter 9 – Shared Lanes and Bicycle Lanes

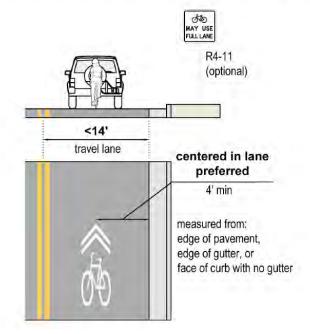
9.1 Introduction

- 9.2 Design User Profile Considerations
- 9.3 Shared Lanes and Shared Roadways
- 9.4 Bicycle Lane Considerations
- 9.5 Buffered Bicycle Lanes
- 9.6 Bicycle Lane Considerations Adjacent To Parking and Loading

- 9.7 Bicycle Lane Considerations at Bus Stops
- 9.8 Advisory Bicycle Lanes (Experimental)
- 9.9 Bicycle Lanes on One-Way Streets
- 9.10 Bicycle Lanes on One Side of Two-Way Streets
- 9.11 Counterflow Bicycle Lanes
- 9.12 Bicycle Lanes at Intersections,
 Driveways, and Alleys

9.3.2. Limited Effectiveness of Wide Outside Lanes

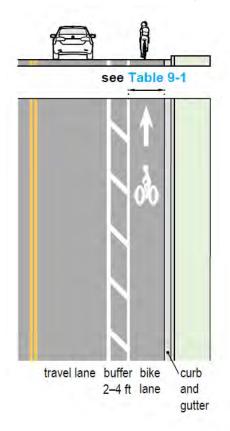
Figure 9-1: Shared Lane Conditions (Rural Context, Suburban Context, Urban Context)

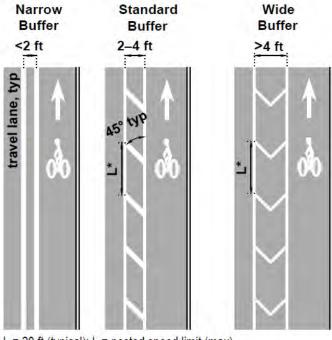


Rural Roadway

Suburban Arterial

Figure 9-3: Shared Lane Marking Lateral Placement in Travel Lanes < 14 Feet Without Parking


9.4.1. Bicycle Lane Widths


Table 9-1: One-Way Standard Bicycle Lane Widths

	One-Way Stan	dard Bike Lane	Widths		
Bike Lane Context	Practical Minimum (ft)	Recommended Lower Limit (ft)	Recommended Upper Limit (ft)	Practical Maximum (ft	
Adjacent to edge of Pavement	41	5	7	83	
Adjacent to curb (exclusive of gutter)	51	6	7	8 ³	
Between through lanes and turn lanes ²	5 ¹	6	7	83	
Between buffers	4	5	7	83	
Adjacent to parking	5	6	7	83	
To allow occasional passing or side-by-side bicycling ⁴	6.5	8 ³	10³	113	

Notes

9.5. Buffered Bicycle Lanes

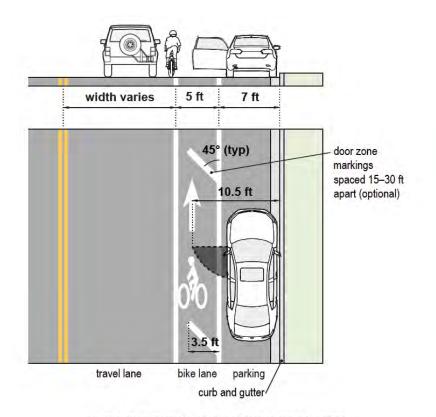
L = 20 ft (typical); L = posted speed limit (max)

Figure 9-9: Buffer Design Options

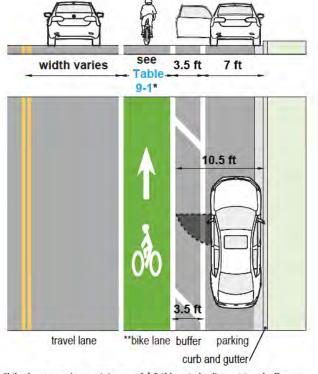
^{&#}x27;Shoulders should be provided in lieu of narrow bicycle lanes to avoid confusion below the practical minimum width.

²Buffers are desirable where bicycle lanes are located between through lanes and turn lanes, especially as motorist speeds exceed 30 mph.

³Buffered bike lanes or separated bike lanes should be considered in lieu of wider bicycle lanes to avoid confusion with a parking or travel lane.


⁴A minimum of 6.5 ft is necessary for occasional passing and 8 ft or more for comfortable side-by-side bicycling.

^{*}spacing may be reduced where engineering judgement determines more frequent spacing


^{*}Wider buffers recommended for higher speed and/or higher volume roadways

9.6.4. Bicycle Lanes Adjacent to Parallel Parking and Loading

9.6.4.1 Minimum Width Bike Lane Considerations

^{*}bike lane may be a minimum of 4 ft if located adjacent to a buffer

Figure 9-11: Bike Lane with a Door Zone Buffer adjacent to Parking

^{**}optional green-colored pavement

9.8. Advisory Bicycle Lanes (Experimental)

Advisory bicycle lanes are continuously-dotted bicycle lanes which permit motorists to temporarily enter the bicycle lane, allowing opposing motor vehicle traffic sufficient space to pass (see Figures 9-15 and 9-16). They are an experimental design treatment for streets with lower traffic speeds and volumes where it is not feasible to provide standard-width travel lanes and bicycle lanes. They are designed to improve bicyclist comfort while also providing a traffic calming benefit. This is the same procedure for motorists operating on yield streets where motorists must move to the right side of the road, into unoccupied parking spaces or driveways, to permit oncoming traffic to pass (see Section 8.4.1).

Figure 9-15: Example of an Advisory Bicycle Lane in Alexandria, VA

Groundbreaking to include experimental treatments to guide practitioners on emerging concepts

9.12.3. Right Turn Lane Considerations

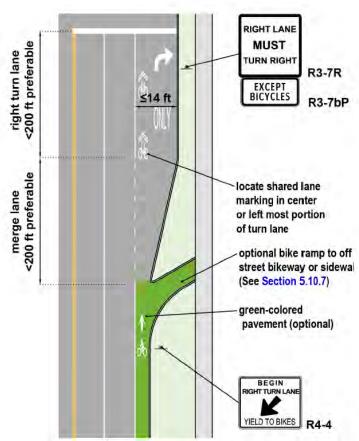


Figure 9-22: Example Right-Turn Only Lane with Shared Lane Markings

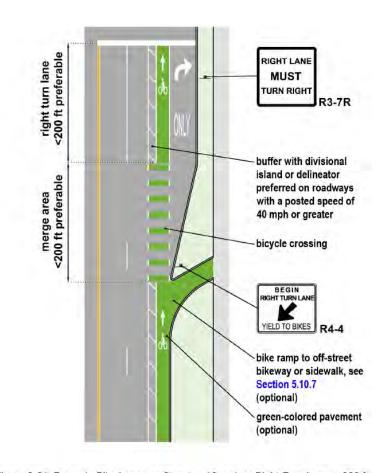


Figure 9-24: Example Bike Lanes on Streets >40 mph or Right-Turn Lanes >200 ft

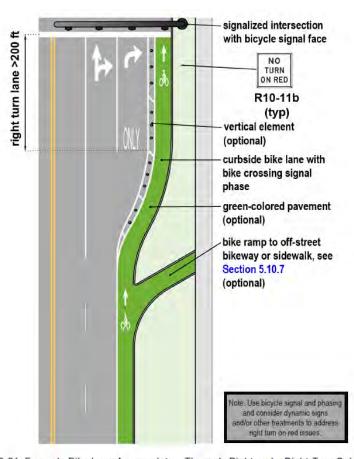


Figure 9-26: Example Bike Lane Approach to a Through-Right and a Right-Turn Only Lane

Thank you! Questions?

Jeremy Chrzan, PE, PTOE

Multimodal Design Practice Lead
jchrzan@tooledesign.com

North Central Texas Council of Governments

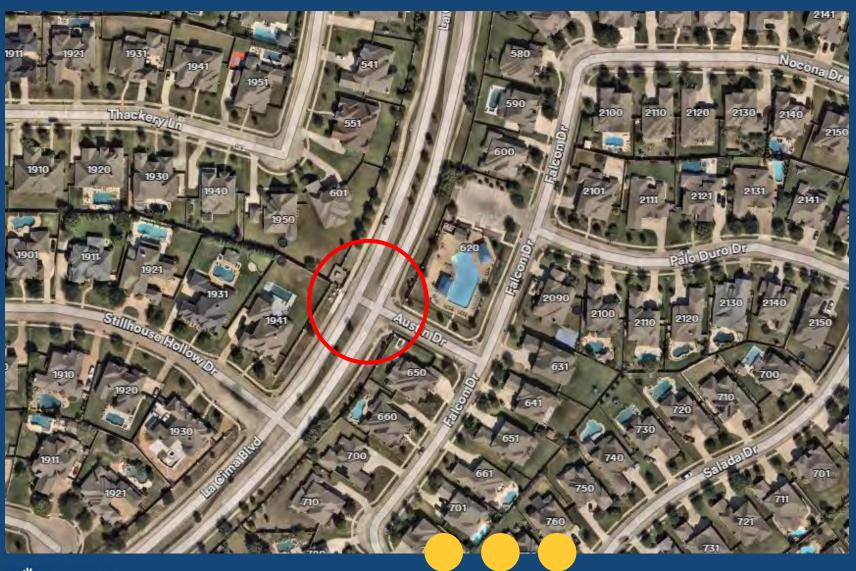
Bicycle & Pedestrian Advisory Committee Meeting

February 19 **2025**

Hulon Webb Town of Prosper Josh Smith Lee Engineering

Problem

- Town of Prosper starting to get many requests for mid-block crosswalks
- Needed a standard way to evaluate & implement
- Integrate with pre-existing 2014 policy on school zone treatments, but also for non-school locations



UP TO \$200 FINE

Case Study

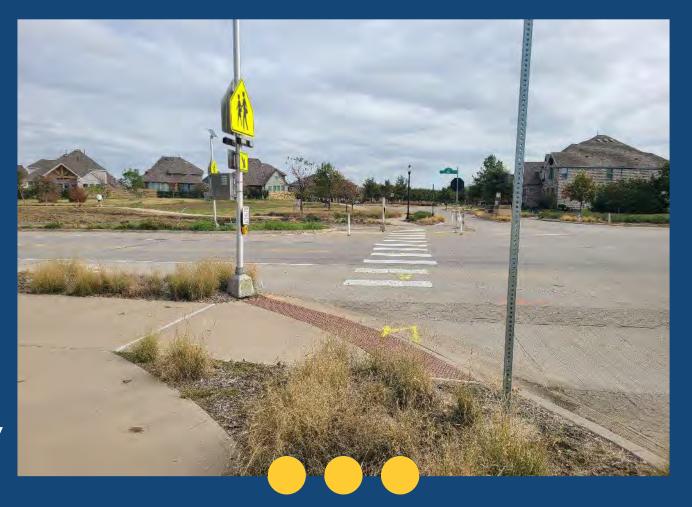
La Cima @ Austin

Process

Review:

- Current Texas state law
- MUTCD (2011 & 2023)
- PROWAG Final Rule
- TxDOT guidance
- National Best Practices
- Peer City Policies
- Adapt for Prosper's needs

Updated Policy


Part I – Laws & Standards related to crosswalks

Part 2 – Deciding Whether to Mark Crosswalks

Part 3 – Recommended Crosswalk Design Features

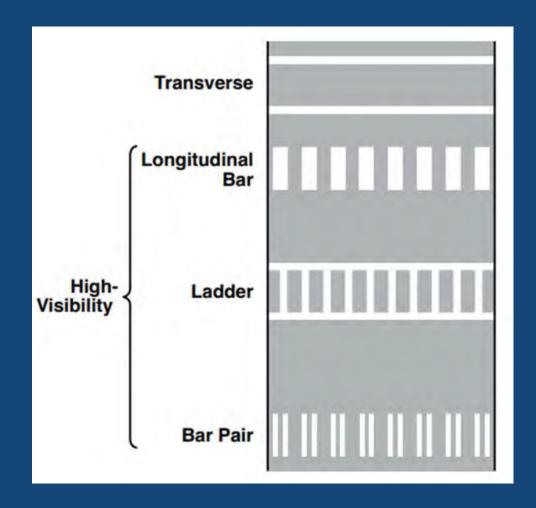
Part 4 – Reduced Speed School Zones

Part 5 – Development Review

Crossing Categories

Controlled – traffic signal, pedestrian hybrid beacon or stop sign controls the street being crossed

Uncontrolled – traffic across crosswalk is free flowing



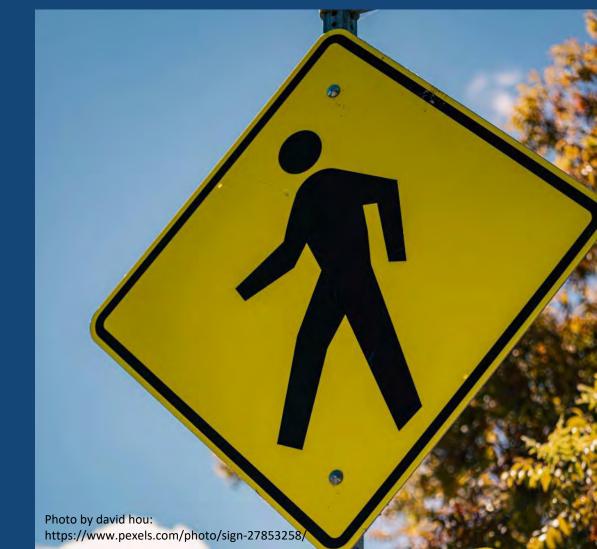
Laws & Standards

New MUTCD crosswalk type definitions:

- Transverse
- High-Visibility:
 - Longitudinal Bar
 - Ladder
 - Bar Pair
- Texas law says markings not required for a crosswalk

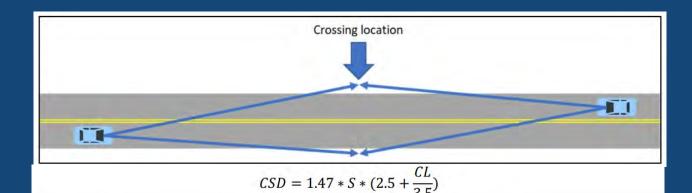
For stop-controlled, mark if one or more apply:

- Part of walk route within ½
 mile of major ped generator
- Involves multi-use path
- In Old Town District or other ped-oriented development
- Sidewalk or ped generators on both sides at all-way stop
- Wide Crossing (> 36')

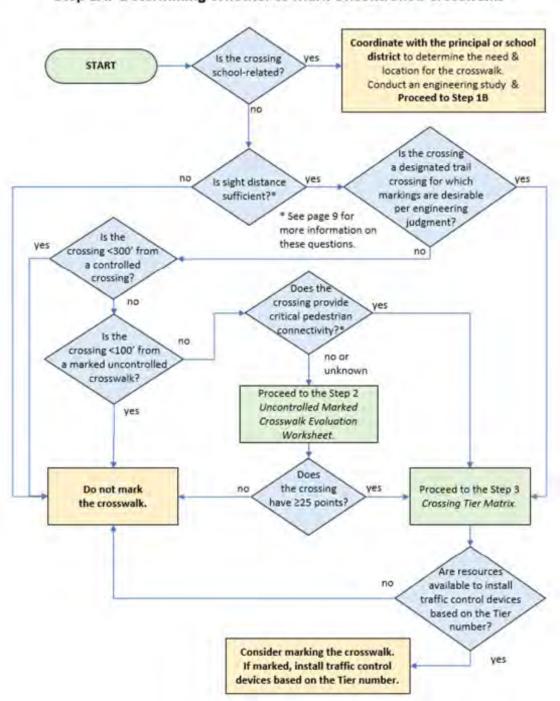


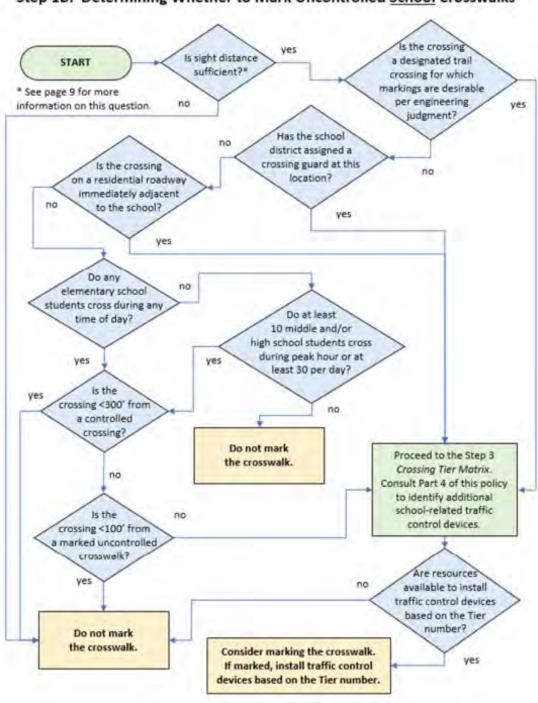
For stop-controlled, mark if one or more apply:

- Stopped queues often block crosswalk
- Two-way vehicle traffic > 1,500
 ADT or 150 vehicles/peak hr
 and ped thresholds met:
 - ≥ 20 peds/hr in one hour
 - ≥ 18 peds/hr in two hours
 - ≥ 15 peds/hr in three hours



For <u>Uncontrolled</u>, consider:


- School related?
- Crossing guard?
- No. of students crossing
- Stopping Sight Distance
- Crossing Sight Distance
- Designated Trail?
- Distance from controlled crossing or other marked crosswalk


Speed			Minim	um Cross	ing Sight	Distance	(CSD), in	feet										
Limit (S)				Crossi	ng Lengt	h (CL) in j	feet											
in mph	10	12	20	24	30	36	40	48	50	60								
25 or less	200	220	305	345	410	470	515	600	620	725								
30	240	265	365	415	490	565	615	720	745	870								
35	280	310	425	485	570	660	720	835	865	1015								
40	315	350	485	555	655	755	820	955	990	1155								
45	355	395	545	620	735	850	925	1075	1115	1300								
50	395	440	605	690	815	940	1025	1195	1235	1445								
55	435	480	665	760	900	1035	1130	1315	1360	1590								

Step 1A: Determining Whether to Mark Uncontrolled Crosswalks

Step 1B: Determining Whether to Mark Uncontrolled School Crosswalks

As directed by uncontrolled flowchart, consider:

- I. Nearby ped generators (0-6 pts)
- 2. Crash history (6+ pts/crash)
- 3. Speed limit (0-6 pts)
- 4. Traffic volume (0-6 pts)
- 5. Dist. to nearest crossing (0-9 pts)
- 6. No. of thru lanes crossed (0-10 pts)

Step 2: Uncontrolled Marked Crosswalk Evaluation Worksheet

Note: This worksheet should only be used if directed by the Step 1A flowchart on page 12

	Pedestrian Generators. Add 2 points for each pedestrian generator within 300 feet of the crossing, to a maximum of 6 points. Pedestrian generators include parks, swimming pools, grocery stores, convenience stores, apartment complexes, community centers, bus stops, etc.						
Crash History. Add 6 points for each pedestrian or bicyclist crash within 300 feet of the crossing in the past 60 months. ²⁰ Add 5 additional points for any crashes counted above that resulted in							
	Add 5 additional points for any crashes fatal or serious injury. ²¹	counted above that re	esulted in	Points:			
3.	Speed Limit	25 mph or below	0 points				
		30 mph	2 points				
		35 mph	4 points				
	40 mph or above 6 points						
4.	Daily Traffic Volume						
	3,000 vehicles	0 points					
		2 points					
		4 points					
	3	15,001 vpd or more	6 points	Points:			
5.	Proximity to Nearest Controlled or Gra	de-Separated Crossin	g				
		300 to 500 feet	3 points				
		500 to 750 feet	5 points				
		751 to 1000 feet	7 points				
		1001 feet or more	9 points	Points:			
6.	Number of Through Lanes Crossed	2 lanes or fewer	0 points				
		3 lanes	3 points				
		4 lanes	5 points				
		5 lanes	7 points				
		6 lanes or more	10 points	Points:			

Also consider:

- 7. Ped/bike crossing volume within 300 feet (0-15 pts)
 - Sliding scale for peak hour vs.
 12-hour total
 - Do not install if <10 users/hr
 & <50 users / 12 hrs)

Else, if ≥ 25 points then eligible for marked crosswalk

- If the subtotal for Step 2, Parts 1-6 is 25 points or greater, the crossing is considered eligible for a marked crosswalk. Designers should refer to Step 3, the *Uncontrolled Crossing Tier Matrix*, to determine appropriate traffic control devices.
- If the subtotal for Step 2, Parts 1-6 is less than 10 points, the crossing is not considered eligible for a marked crosswalk.
- If the subtotal for Step 2, Parts 1-6 is between 10 and 24 points, a pedestrian count should be conducted to determine additional points, as follows in Step 2, Part 7:

	Total	12-Hour	Peak Hour			
	Do Not Install	< 50 crossings	Do Not Install	< 10 crossings		
	5 points	50 to 79 crossings	5 points	10 to 19 crossings		
	10 points	80 to 109 crossings	10 points	20 to 29 crossings		
Points:	15 points	> 110 crossings	15 points	> 30 crossings		

Crossing counts should be collected during peak pedestrian and bicyclist crossing times for a minimum of two hours. Peak pedestrian and bicyclist crossing hours may not coincide with peak motor vehicle traffic hours. If the peak crossing hours are unknown, it is desirable to conduct a 12-hour count of crossing activity to determine the peak times. The peak crossing hours for some locations (such as parks or athletic fields) may occur on the weekend.

Step 2, Parts 1-7 Total Points:

- If the total is 25 points or greater, the crossing is considered eligible for a marked crosswalk.
 Designers should refer to Step 3, the Uncontrolled Crossing Tier Matrix, to determine appropriate traffic control devices.
- If the total is less than 25 points, the crossing is not eligible for a marked crosswalk (except if otherwise indicated on the Step 1 flowchart).

For uncontrolled, determine what "Tier" of traffic control devices apply given:

- No. of Thru Lanes Crossed
- Type of Median
- Average Daily Traffic (ADT)
- Speed Limit

Street Functional	Total Number of Through Lanes	Type of Median		Vehicle ADT Vehicle ADT < 9,000 9,000 to < 12,000				1000	hicle A 0 to < 1	76.00	Vehicle ADT ≥ 15,000			
Classification	Crossed in Both	Type of Wedian					Sp	eed lin		h)				
Classification	Directions		≤ 30	35	≥ 40	≤30	35	≥ 40	≤30	35	≥40	≤ 30	35	≥ 40
Local	1 or 2	Any	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1 or 2	No median or raised median	5	5	3*	5	4	3*	5	4	3*	4	4	3*
	1 or 2	TWLTL or left-turn lane	5	5	3*	5	4	3	4	4	2	4	4	2
Collector or Arterial	3 or 4	Raised	5	4	3*	4	3*	2	4	3*	2	3	2	1
	3 or 4	Not raised or no median	3	2	1	3	2	1	3	2	1	2	1	1
	≥5	Any	3	2	1	2	2	1	2	1	1	1	1	1

Only use this table if prompted by earlier flowcharts, other conditions apply

<u>Tier</u>

- Ped. Hybrid Beacon or Signal
- ² RRFB*, Ped. Hybrid Beacon or Signal
- ³ RRFB*
- Warning Signs in Advance & at Crossing
- Warning Signs at Crossing
- Warning Signs at Crossing (transverse mkgs)

*RRFB = Rectangular Rapid-Flashing Beacon

LEE ENGINEERING

Step 3B: Determine the Devices to Use Based on the Tier Number

Tier	Crosswalk markings	W11-2 (or W11-15 or S1-1) and W16-7P warning signs at crossing ²	W11-2 (or W11-15 or S1-1) and W16-9P advance warning signs ²	Stop lines and STOP HERE FOR PEDESTRIANS signs	R1-6a In- Street Pedestrian Crossing Signs	PED XING or SCHOOL pavement word markings	Raised median or crossing island	Rectangular Rapid-Flashing Beacon (RRFB)	Pedestrian Hybrid Beacon (PHB)	Traffic Signal	
Tier 1	High- Visibility	Yes	Optional ³	Yes	No	Optional ³	Optional	No	Optional in lieu of Traffic Signal ⁵	Yes, if warranted ⁶	
Tier 2	High- Visibility	Yes	Yes for RRFB, optional for PHB ³	On multilane approaches	No	Optional ³	Recommended if RRFB is used ⁴	Optional in lieu of PHB	Yes ⁵	Optional in lieu of PHB if warranted ⁶	
Tier 3	High- Visibility	Yes	Yes	On multilane approaches	No	Optional ³	Recommended if practicable ⁴	Yes	No	No	
Tier 4	High- Visibility	Yes	Yes	On multilane approaches	Optional for 2- lane & ≤ 30	No ³	Optional	No ³	No	No	
Tier 5	High- Visibility	Yes	No***	No	mph in school zones. No for	No ³	No	No ³	No	No	
Tier 6	Transverse ¹	Yes if midblock, Optional otherwise	No***	No	all other crossings	No ³	No	No ³	No	No	

¹ At intersection locations only. High-Visibility markings should be provided at non-intersection locations.

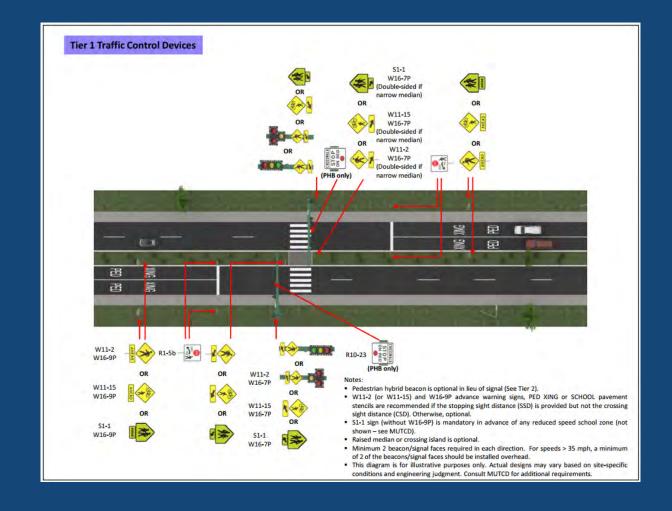
² For school zone crossings, use S1-1 signs instead of W11-2 signs. For crossings of trails with shared bicycle and pedestrian traffic, use W11-15 signs instead of W11-2.

³ Recommended if the stopping sight distance (SSD) is provided but not the crossing sight distance (CSD).

⁴ Consider a raised median **before** evaluating other devices. In some cases, it may be possible to retrofit a raised median on the roadway without affecting needed left-turn access. If a raised median is feasible, re-evaluate the crossing according to its tier number with a raised median.

⁵ If MUTCD guidelines in Figures 4J-1 or 4J-2 (see Appendix) are met for the appropriate speed.

⁶ See Chapter 4C of MUTCD for traffic signal warrant study requirements.


Tier I:Traffic Signal Rendering

Tier I:Traffic Signal Plan View Layout with Notes

Tier 2: Pedestrian Hybrid Beacon Rendering

Tier 3: Rectangular Rapid-Flashing Beacon (RRFB) Rendering

Tier 4: Warning Signs in Advance & at Crossing

Tiers 5 & 6: Warning Signs at Crossing Only



Case Study

La Cima @ Austin



Case Study

Old Rosebud /Windsong

Case Stud

Bryant
Elementary/
Windsong
Ranch HOA

PROSPER

Case Study

ISD added a school crossing guard

Case Study

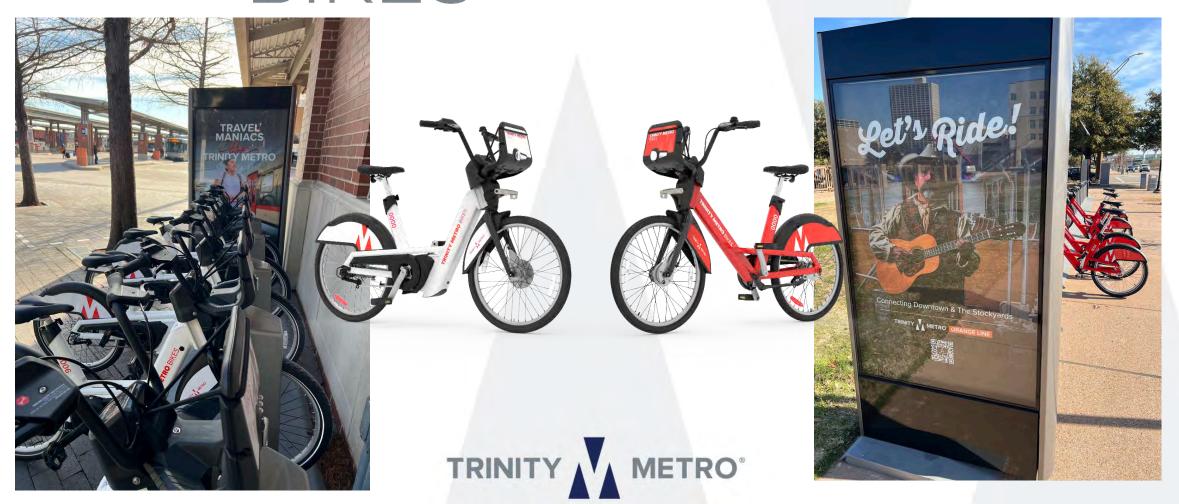
Pedestrian Hybrid Beacon

Questions?

https://www.prospertx.gov/ 347/Engineering-Resources

Hulon T.Webb, Jr., P.E.
Director of Engineering Services
Town of Prosper
(972) 569-1065
HWebb@prospertx.gov

Josh Smith, P.E., PTOE
Project Manager
Lee Engineering
(972) 456-9044
jsmith@lee-eng.com



Trinity Metro Bikes

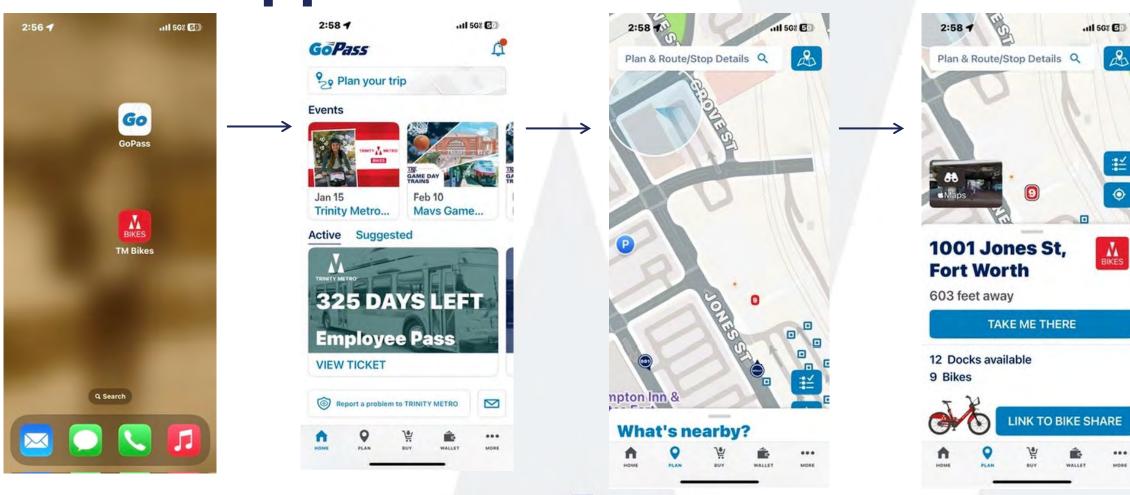
Shawn Tubré – Director, Trinity Metro Bikes

TRINITY METRO BIKES

Changing the world

——— one city at a time

ly urban solutions


E-Station*

- 1 Smart selective charging prioritizes bikes & e-scooters with lower battery levels.
- 2 Connected station with real-time communication (Optional payment interface).
- 3 Grid powered, just one connection point for the entire Smart Station.
- 4 Certified to meet the highest quality standards.

GoPass App

Trinity Metro Bikes App

New Pricing Structure TRINITY METRO

BIKES

\$125/year

Annual Membership

12 months of unlimited 1 hour rentals

A yearly membership for those who ride with us regularly.

\$25/200 minutes

Flex Pass

200 minutes of ride time, expires one year after purchase. This flexible pass is excellent for a single rider who doesn't want to stress about time limits.

\$10/year

EBT Annual Membership

12 months of unlimited 1 hour rentals

A yearly membership for those of reduced income.

\$2/30 minutes

PAY AS YOU GO

Great for commuters and short trip riders.

Central Station

Dream Park Station

Stats:

- > 24 stations in operation. 62 planned by end of April
- > 400 total bikes: 340 electric & 60 standard
- > Over 1000 new customers in first three weeks
- > Over 2000 rides since launch

AX BIKES

UPCOMING EVENTS AND TRAINING


Bicycle and Pedestrian Advisory Committee February 19, 2025

Daniel Herrig, Committee Vice Chair

- One of the largest gathering of highway safety professionals in the United States.
 Learn from subject matter experts about the latest highway safety research, best practices, and cutting-edge initiatives. As well as explore innovative technology and strategies used to combat risky driving behaviors and save lives.
- For more information, visit: <u>lifesaversconference.org</u>
- Registration is open now!

National Bike Summit March 11-13, 2025 Washington, DC

- The National Bike Summit will feature plenary speakers, mobile workshops, breakout sessions, an award reception, and a Lobby Day to meet with members of Congress.
- For more information, visit: National Bike Summit | League of American Bicyclists (bikeleague.org)

2025 National Planning Conference

March 29-April 1 Denver, CO

April 23-25 Online

- 2025 core content areas will include sessions on Transportation and Infrastructure, Climate Change, Energy, and the Environment, Inclusive Planning for Social Change, and more!
- For more information, visit: <u>National Planning Conference</u> (<u>planning.org/conference</u>)

American Planning Association

DESIGNING CITIES 2025 May 28-May 31, 2025 Washington, D.C.

- The NACTO Designing Cities Conference brings together over 1,000 officials, planners, and practitioners to advance the state of transportation in North American cities.
- Early bird registration is currently open.
- For more information, visit: https://nacto.org/conference/designing-cities-2025-washington-d-c/

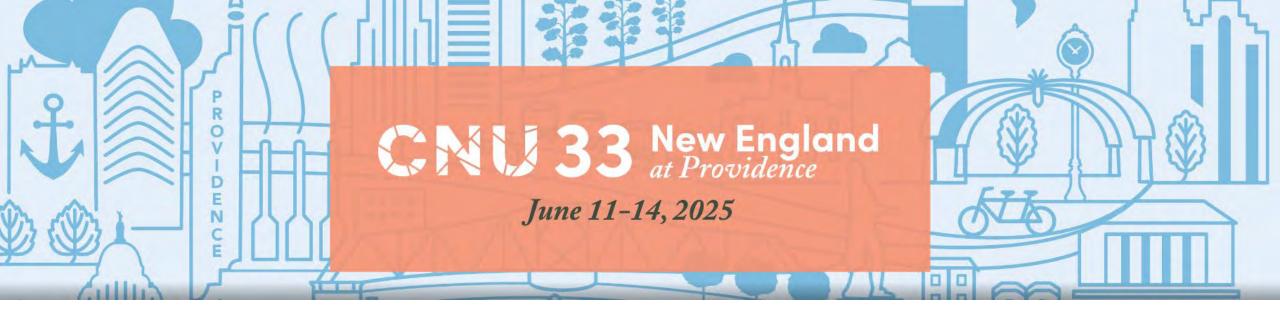
Understanding ADA Requirements and Transition Plan Development for Title II Entities Thursday, June 5, 2025 (Online)

Objectives:

- Technical requirements under the ADA
- Interactions between federal, state, and construction laws
- Funding, planning, and prioritizing your project
- Policy development and implementation, and more!

Register at www.nctcog.org/Training-
www.nctcog.org/Training-
www.nctcog.org/Training-
Academy/Understanding-ADA-Requirements-
and-Transition-1

Understanding ADA Compliance for Parks & Recreation


Thursday, Sept 11, 2025 (Online)

Focus on accessibility in the following Parks & Recreation amenities:

- Sports venues
- Playgrounds
- Parks
- Hike and bike trails, and more!

Register at https://form.jotform.com/242116216163143

- This event is geared toward planning professionals and local government staff. The conference will address challenges such as sustainable housing, equitable growth, and community resilience.
- Registration will open in late February 2025.
- For more information, visit: https://www.cnu.org/cnu33

Congress for the New Urbanism

ITE Annual Meeting and Exhibition

August 10-13, 2025 Orlando, FL

- The 2025 Annual Meeting and Exhibition will explore both practical solutions and cutting-edge strategies designed to revolutionize safety and mobility in the coming years.
- For more information, visit: https://www.iteannualmeeting.org/about- iteorlando2025

TrailNation Summit October 27-29, 2025 Cleveland, OH

- RTC will gather 500 trail network visionaries, innovators, and practitioners from across the country for two days of dynamic mobile workshops, immersive peer-learning sessions, networking and relationship building to unlock the power of trail networks for communities nationwide.
- Dates to remember:
 - Early-bird registration is open now!
 - May 31: Regular registration opens
- Visit <u>railstotrails.org/trailnation/summit2025/</u> for more information

APATX25 Chapter Conference October 22-24 Bryan-College Station

- Save the date!
- Call for sponsors: Coming soon
- Call for award nominations: Coming soon
- Visit https://texas.planning.org/conferences-and-events/past-conferences/ for more information

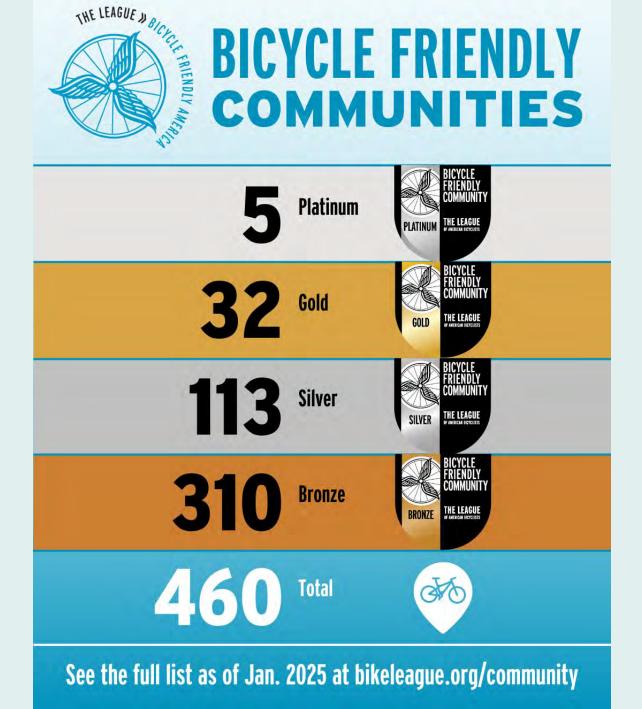
Apply to be a Bicycle Friendly Community

The Bicycle Friendly Community (BFC) program provides a roadmap to improve conditions for bicycling and the guidance to make your distinct vision for a better, bikeable community a reality.

- Deadline to apply is <u>June 25, 2025</u>
- For more information, visit: bikeleague.org/bfa/community/

Bicycle Friendly Community (BFC) 2025 Awards

- Dallas (New) Bronze
- Frisco (Renewal) Bronze
- Richardson (Renewal) Bronze


Honorable Mention

Lewisville – First-time applicant

Existing Designations

- Fort Worth (2016-2025) Bronze
- Plano (2015-2027) Bronze

The next BFC deadline is June 25, 2025

Master Plans Under Development

- City of Colleyville Active Transportation Plan
- Collin County Trail Master Plan
- City of Dallas Bikeways Master Plan
- City of Farmers Branch Trail Plan Update
- City of Farmersville Parks Master Plan Update
- City of Grand Prairie Master Bicycle Plan
- City of Greenville Citywide Trails and Bikeways Master Plan
- City of Keller Active Transportation Plan
- City of Weatherford Active Transportation Plan
- ★ Please forward a copy of adopted plans and GIS files to NCTCOG staff once complete to integrate into the regional database

APBP North Texas February Gathering

February 19, 2025 (After BPAC!)

Boston's Restaurant & Sports Bar 2501 E Lamar Blvd, Arlington, TX

 For more information about APBP, visit: North Texas Chapter - Association of Pedestrian and Bicycle Professionals (apbp.org)


Other Events or Training?

For any suggestions/topics for future training opportunities that NCTCOG can help coordinate or promote, please contact:

Catherine
Richardson
crichardson@nctcog.org

Daniel
Snyder
dsnyder@nctcog.org

PLAN DEVELOPMENT PROCESS

Existing Conditions

Data Analysis

Regional Survey

Planning the Network

Action Plan Development Mileage of bikeway network and historic crash locations

Develop plan goals and priorities

> Prioritize bikeway districts for implementation based on crash analysis and public input

Identify contributing factors, and characteristics of roadways and areas with high crash density

Gather regional public input on perception of bicycle saftey and comfort

PLAN DEVELOPMENT PROCESS

Existing Conditions

Data Analysis

Regional Survey

Planning the Network

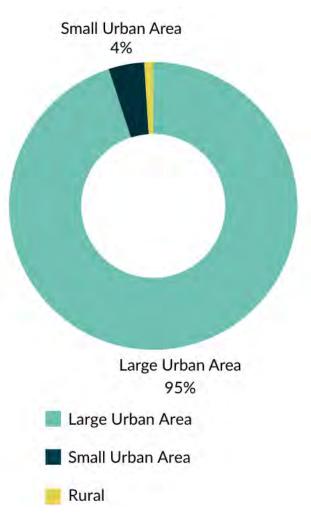
Action Plan Development Mileage of bikeway network and historic crash locations

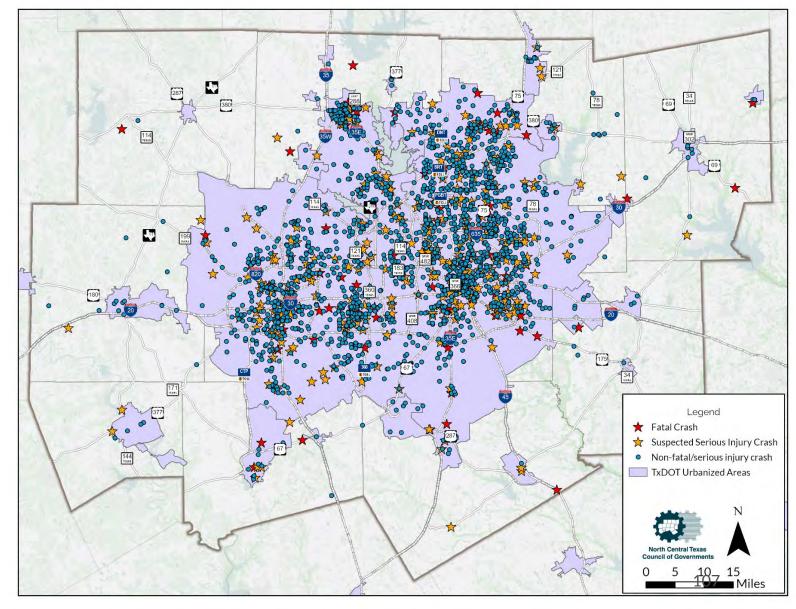
Develop plan goals and priorities

Prioritize bikeway districts for implementation based on crash analysis and public input

Identify contributing factors, and characteristics of roadways and areas with high crash density

Gather regional public input on perception of bicycle saftey and comfort


TXDOT CRASH DISCLAIMER


Source: TxDOT's Crash Records Information System (CRIS) 2019 - 2023 data current as of 4/3/2024 - all TxDOT disclaimers apply to this information

This data is composed of TxDOT "Reportable Crashes" only

 A "Reportable Motor Vehicle Traffic Crash" is defined by TxDOT as: any crash involving motor vehicle in transport that occurs or originates on a traffic way, results in injury to or death of any person, or damage to the property of any one person to the apparent extent of \$1,000

2019-2023 BICYCLE CRASHES IN THE MPA

2019-2023 BICYCLE CRASHES IN THE MPA

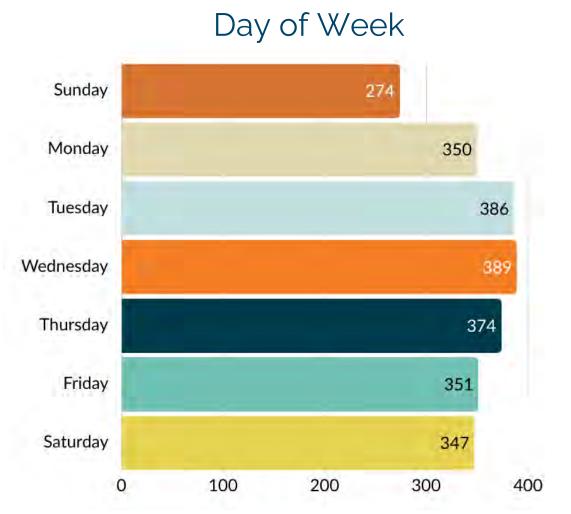
2,471 crashes

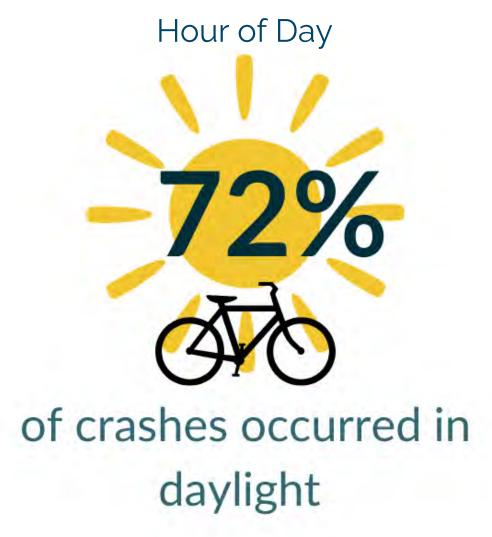
74 fatal
(3%) injury

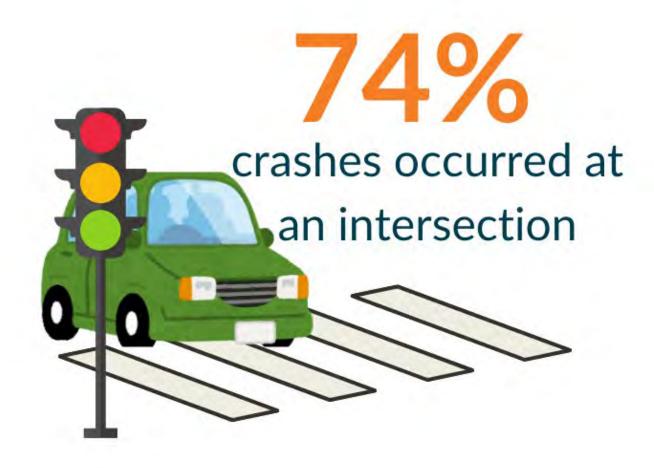
355 suspected
(14 %) serious injury

1,182 suspected minor injury

2019-2023 BICYCLE CRASHES

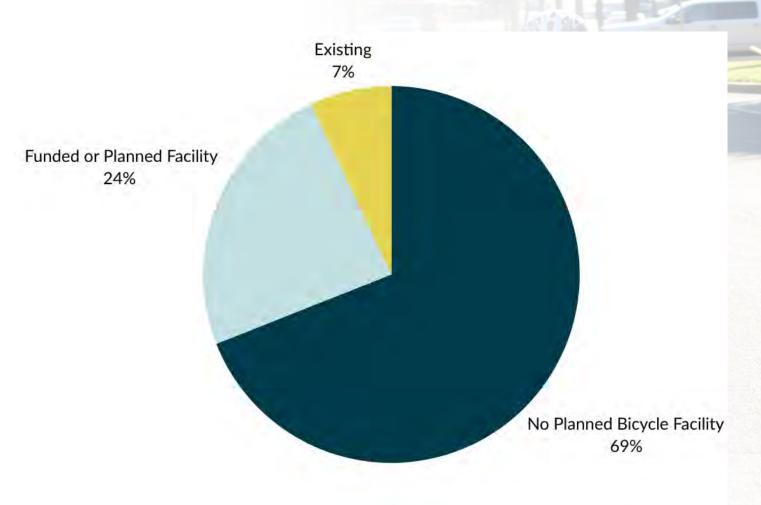

Black populations are disproportionately represented





TOP BICYCLE MOVEMENTS INVOLVED WITH CRASHES *

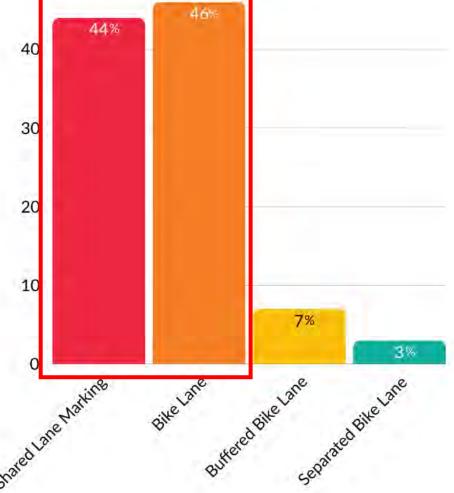
Top 5 most common crash groups at or nearby intersections (73%):


- Motorist failed to yield sign-controlled intersection
- Bicyclist failed to yield signalized intersection
- Bicyclist failed to yield sign-controlled intersection
- Motorist left-turn/merge
- Motorist failed to yield signalized intersection

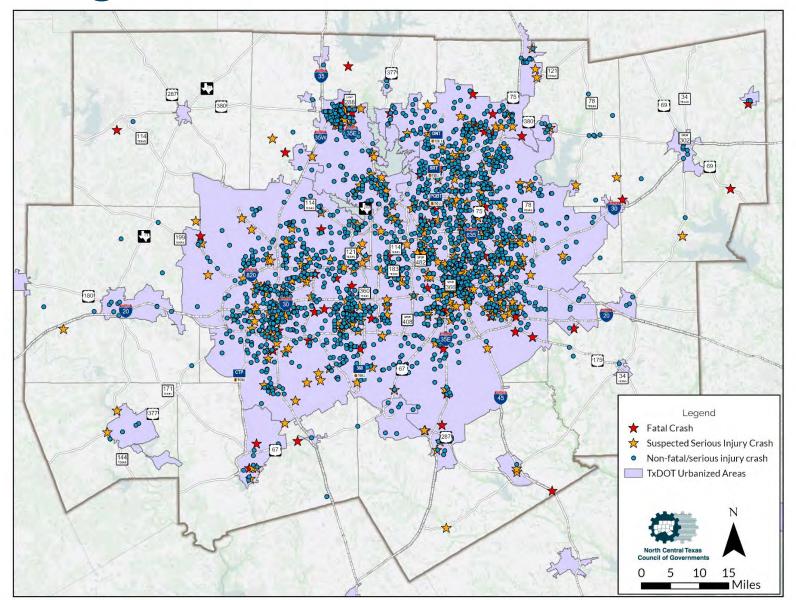
Top 5 most common crash groups at non-intersection locations (79%):

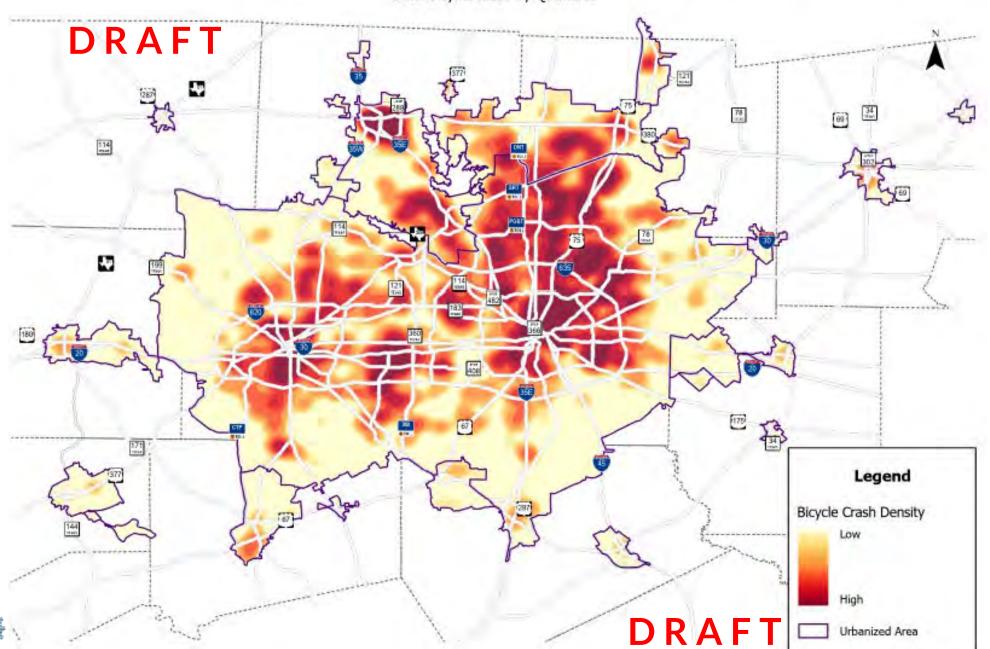
- Motorist overtaking bicyclist
- Bicyclist failed to yield midblock
- Motorist failed to yield midblock
- Motorist left turn/merge
- Head-on

PERCENT OF BICYCLE CRASHES BY BIKEWAY STATUS



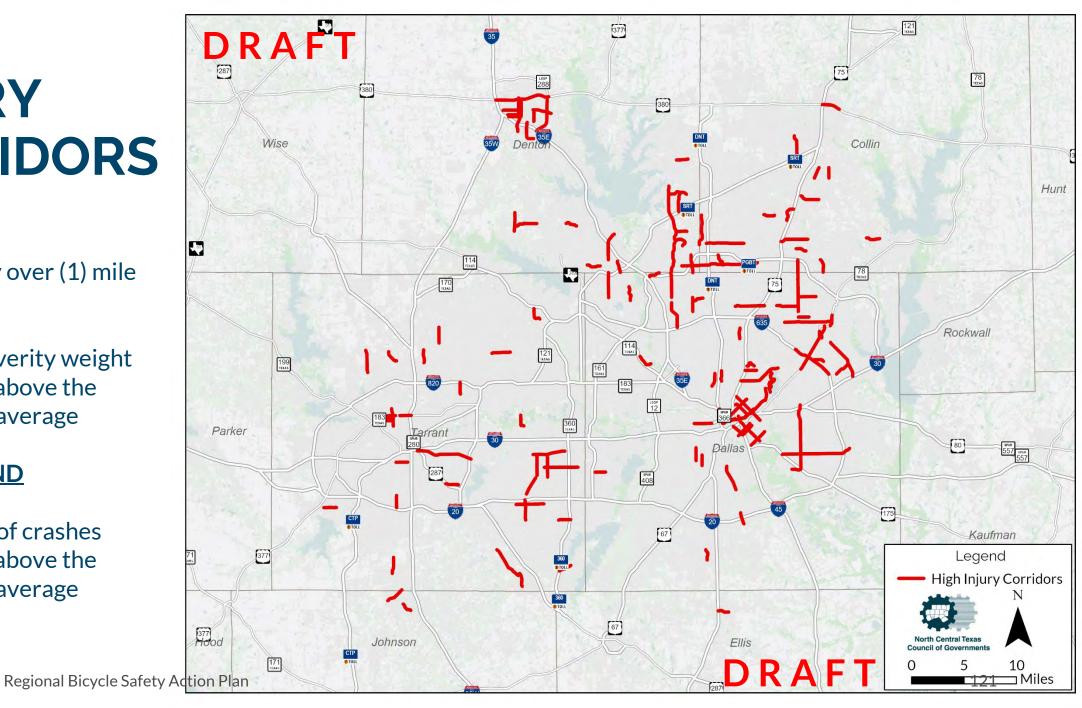
Regional Bicycle Safety Action Plan


PERCENT OF BICYCLE CRASHES ON EXISTING FACILITIES (BY FACILITY TYPE)


2019-2023 BICYCLE CRASHES IN THE MPA

Bicycle Crashes in North Central Texas Density Map

Data is symbolized by Quantiles



HIGH INJURY CORRIDORS (132)

- Roadway over (1) mile in length
- Crash severity weight per mile above the regional average

AND

Number of crashes per mile above the regional average

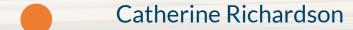
NEXT STEPS (TENTATIVE SCHEDULE)

Stakeholder engagement (Feb – August 2025)

- Workgroup
- Regional Public Opinion Survey

Action Plan Development (April - November 2025)

- Goals and Policies
- Risk Factors
- Recommended Countermeasures
- Priority Districts
- Priority On-Street and Off-Street Network
- Action Plan
- Performance Measures
- Draft Plan



INITIAL WORKGROUP MEMBER CITIES

- Dallas
- Fort Worth
- Grand Prairie
- Irving
- Plano
- Others

CONTACT US

Transportation Planner II

crichardson@nctcog.org | (682) 433-0485

Kevin Kokes, AICP

Program Manager

kkokes@nctcog.org | (817) 695-9275

Daniel Snyder, AICP

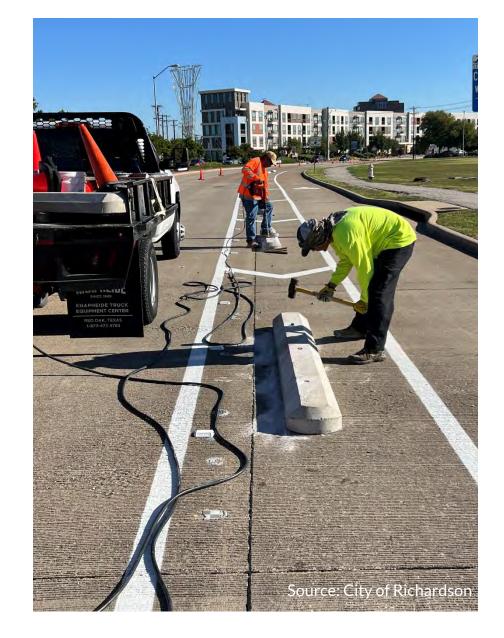
Senior Transportation Planner

dsnyder@nctcog.org | (817) 608-2394

Jill Krauter

Transportation Planner

jkrauter@nctcog.org | (817) 704-5649


Background

Cities are searching for strategies to reduce costs for:

- pre-cast vertical barrier materials used with separated bike lanes
- services associated with installing vertical barriers

NCTCOG and local government stakeholders are exploring a possible regional procurement

May use a standard material and design (e.g., standard mold) that could be manufactured locally and used consistently by cities across the region.

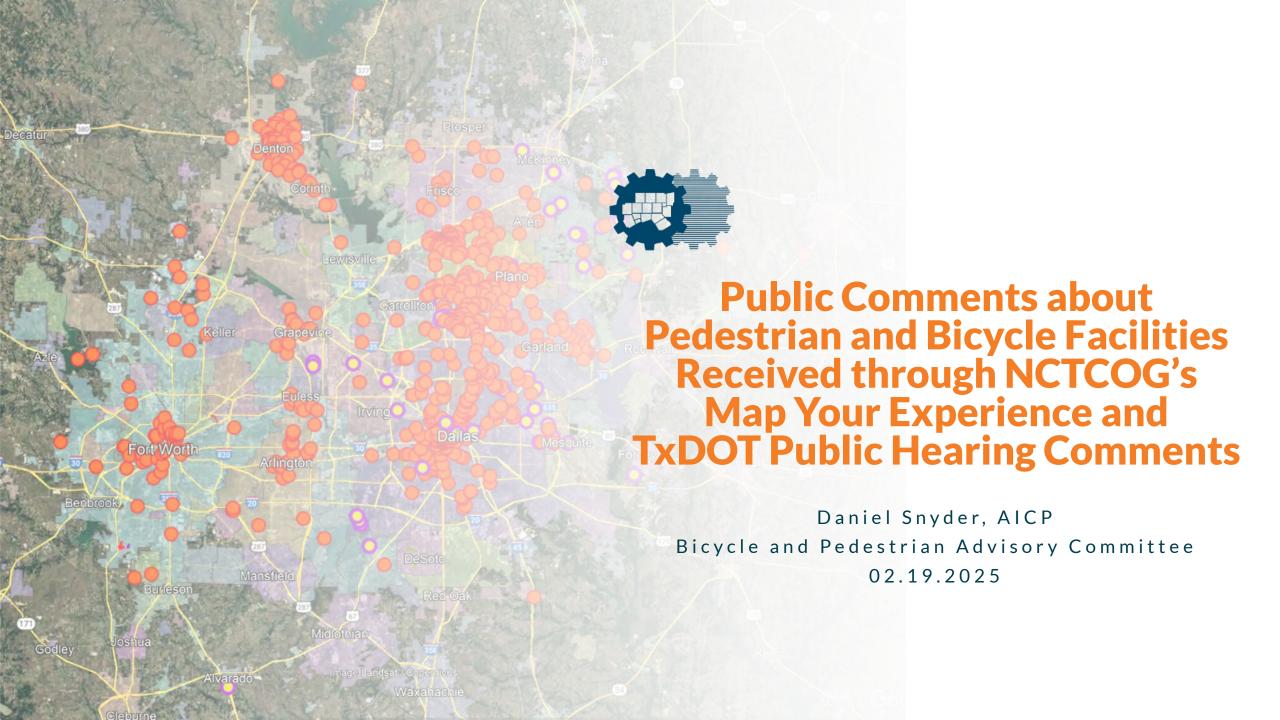
Next Steps

- Group to discuss preferred structure for a regional procurement.
- Other scope of work possibilities include a matrix identifying recommended vertical barrier type(s) based on roadway characteristics and a regional procurement for count equipment.

Next coordination meeting is <u>via</u> <u>Teams</u> on <u>Thursday, March 13, 2025</u>

 Let us know if you or your agency staff is interested in participating.

Contact Us



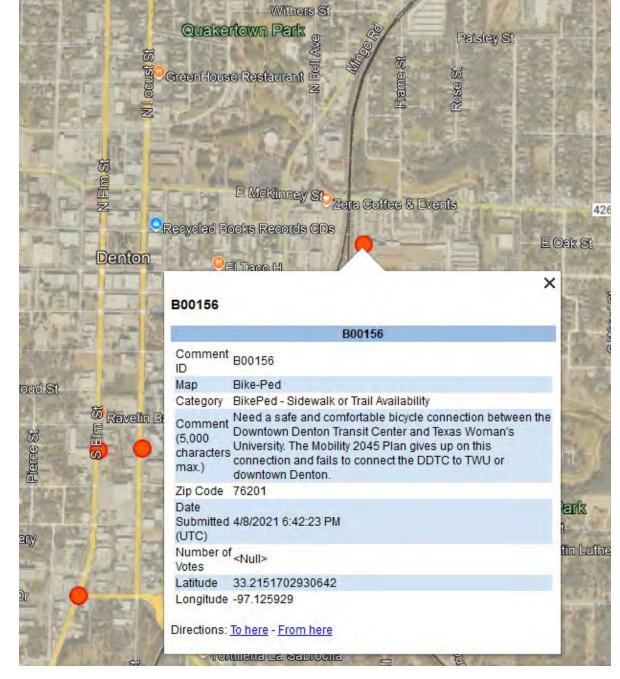
Daniel Snyder, AICP
Senior Transportation Planner
dsnyder@nctcog.org | (817) 608-2394

Kevin Kokes, AICP Program Manager

kkokes@nctcog.org | (817) 695-9275

Overview

Public input on issues related to walking and bicycling was collected via two separate regional forums:


- 2024 Virtual Public Hearing for Bicycle Use on the State Highway System conducted by the TxDOT Dallas District and Fort Worth District offices
- 2020-2024 NCTCOG's Map Your Experience public input tool

The type of comments range from areas of concern for safety, roadway hazards or barriers, or where bicycle or pedestrian facilities are missing and requested.

Distribution

KMZ files were emailed to communities only if public input data was received for that community.

Comments received are viewable via Google Earth and GIS software.

Contact Us

NCTCOG's Map Your Experience

Amy Johnson

Principal Transportation Planner

ajohnson@nctcog.org | 817-704-5608

TxDOT's 2024 Bicycle Hearing Input

Rachael Twiggs, P.E.

Rachael.Twiggs@txdot.gov | 214-320-6669

TxDOT Bike Hearing UpdateSubtitle

2024 TxDOT Bike Hearing

November 7, 2024 at 5pm through November 25, 2024 at 11:59 p.m.

Total Number of Attendees (approx.)

Keep It Moving Dallas (KIMD) Page:

Total views from November 7, 2024 through November 25, 2024: 352

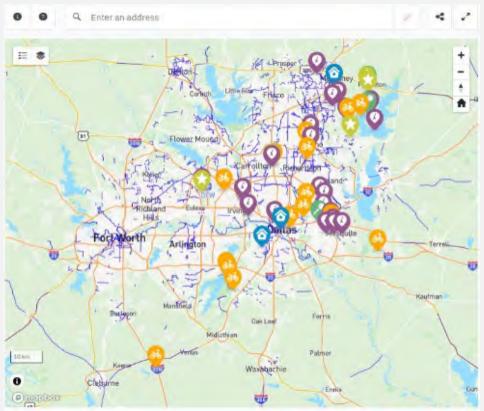
TxDOT.gov Page:

Total views from November 7, 2024 through November 25, 2024: 29

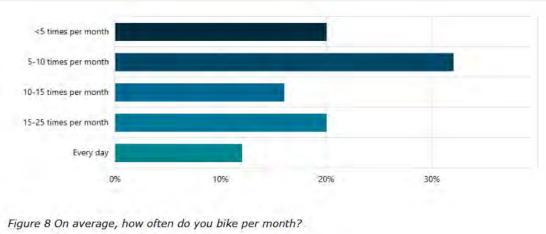
TxDOT Dallas YouTube Video Presentation:

Total views from November 7, 2024 through November 25, 2024: 50

NCTCOG YouTube Video Presentation:


Total views from November 7, 2024 through November 25, 2024: 36

Total Number of Commenters


2024 TxDOT Bike Hearing Survey Contributions and Social Pinpoint Interactive Map

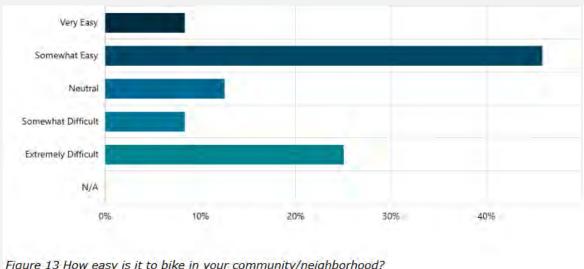
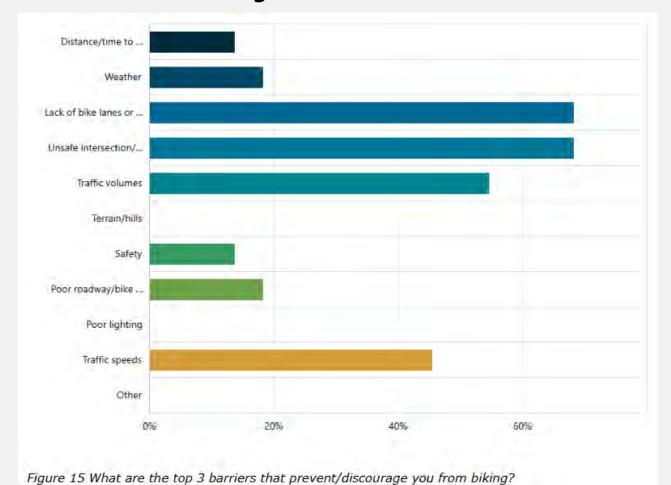



Figure 13 How easy is it to bike in your community/neighborhood?

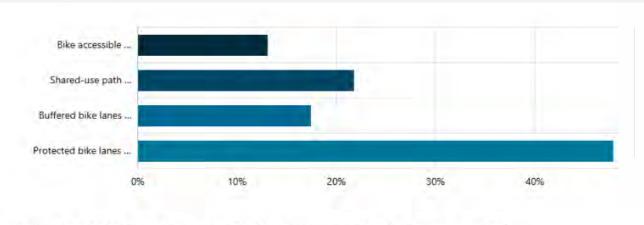


Figure 16 Which trail or on-street bike lane accommodation do you most prefer?

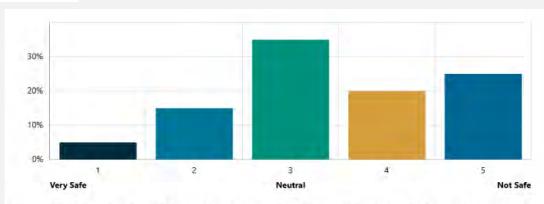
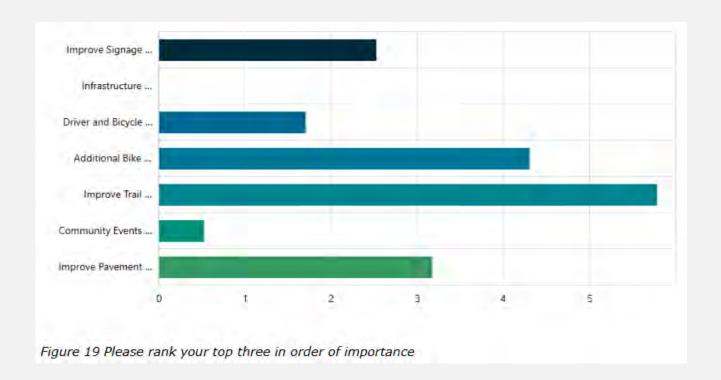
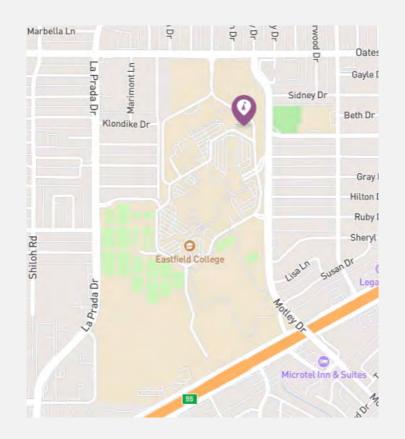
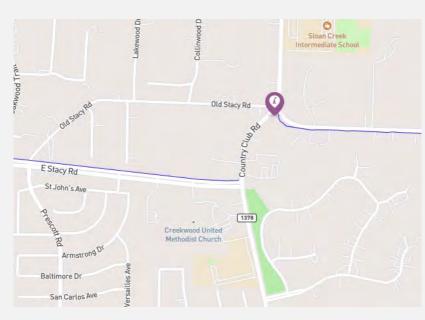



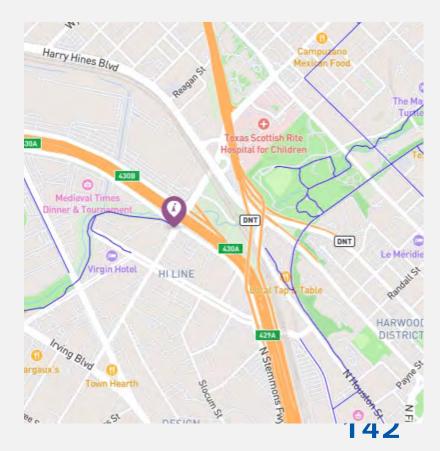
Figure 17 On a scale of 1 to 5 (with 1 being very safe and 5 not safe) how safe do you feel crossing the street at an intersection?

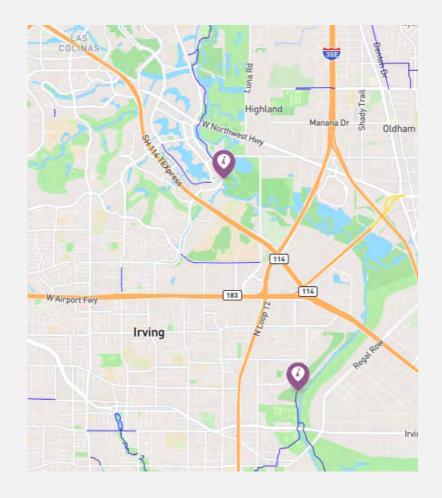


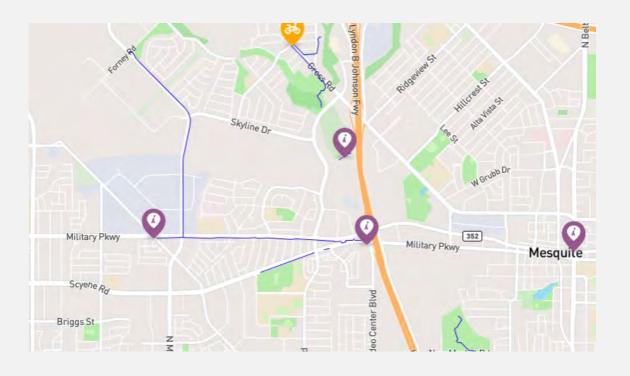
- Improve signage and mapping
- Infrastructure Improvements
- Driver and Bicycle Education
- Additional Bike Facilities/Amenities
- Improve Trail Connectivity
- Community Events and Initiatives
- Improve Pavement Conditions

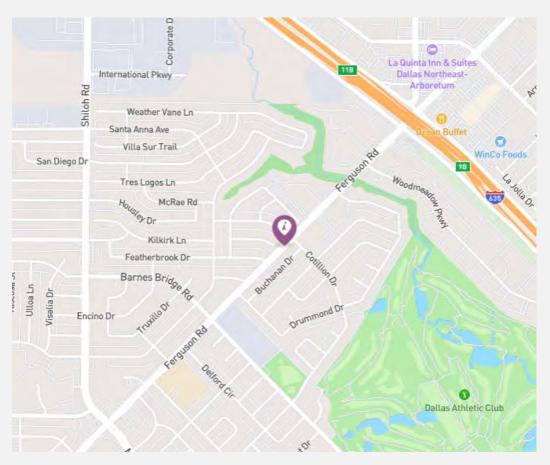

2024 TxDOT Bike Hearing Public Comments



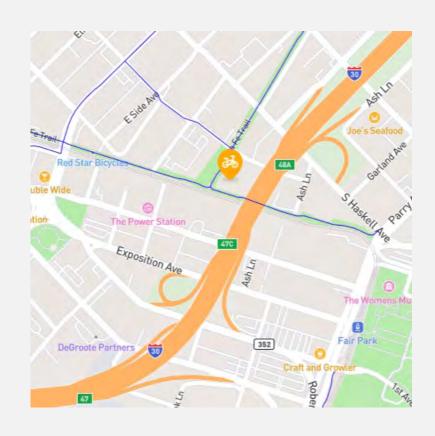


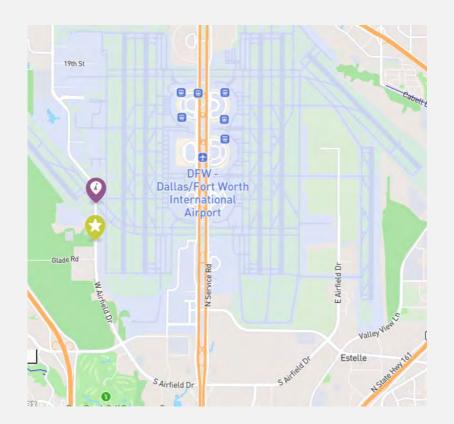

2024 TxDOT Bike Hearing Public Comments - Connectivity





2024 TxDOT Bike Hearing Public Comments - New Trail Locations




2024 TxDOT Bike Hearing Public Comments - On-Street Bike Facilities

2024 TxDOT Bike Hearing Public Comments - Signage

Overall, great feedback was received!

2025 Call for Projects Transportation Alternative Set-Aside Program

Milestones	Date
TxDOT's 2025 TA Call for Projects opens	January 3, 2025
Virtual and in-person workshops	January 6 – January 24, 2025
Responses to workshop questions posted	January 31, 2025*
Preliminary Application (PA) deadline	February 21, 2025
District coordination meeting	Before April 4, 2025*
TxDOT PA review complete	April 11, 2025
TxDOT notifies sponsors of eligibility and provides Detailed Application	April 16, 2025
Detailed Application (DA) deadline	June 20, 2025
TxDOT DA review complete	August 22, 2025*
Commission award	October 2025*

^{*}Target dates

Mobility 2050

The Metropolitan Transportation Plan for North Central Texas

Bicycle and Pedestrian Advisory Committee February 19, 2025

#PlanInProgress

Long-Range Metropolitan Transportation Plan

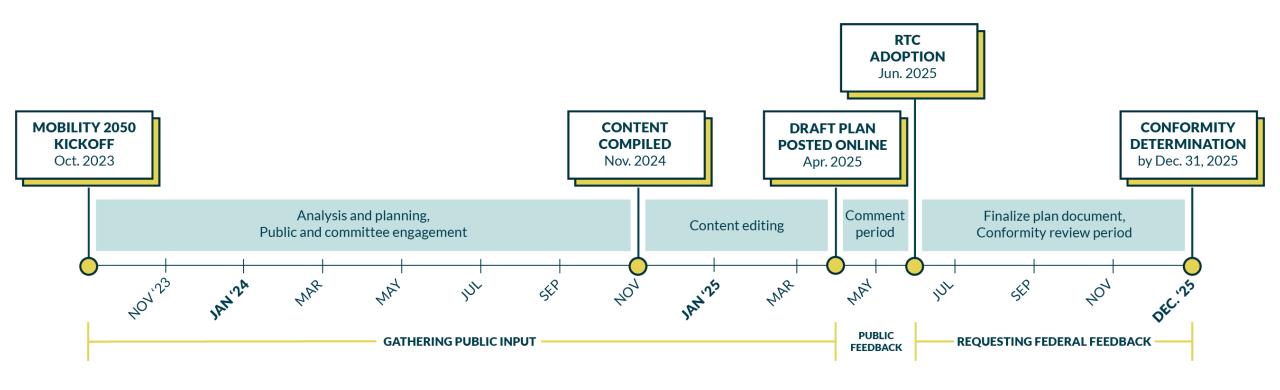
NCTCOG is federally required to maintain a performance-based, multimodal transportation plan that guides the spending of federal investments and serves as a blueprint for the region's transportation network. The plan includes policies, programs, and projects that aim to #ConnectNorthTexas

Must adopt plan within 4 years

Consistency with Transportation Improvement Program and other documents

Must have a 20-year horizon (expires end of 2025)

Public Involvement



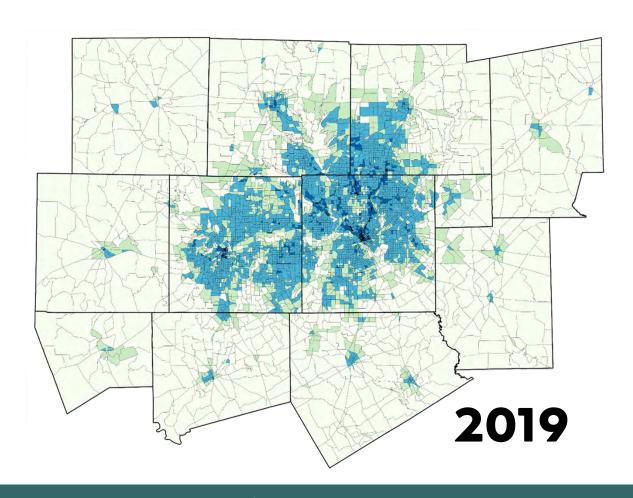
Must include financial plan

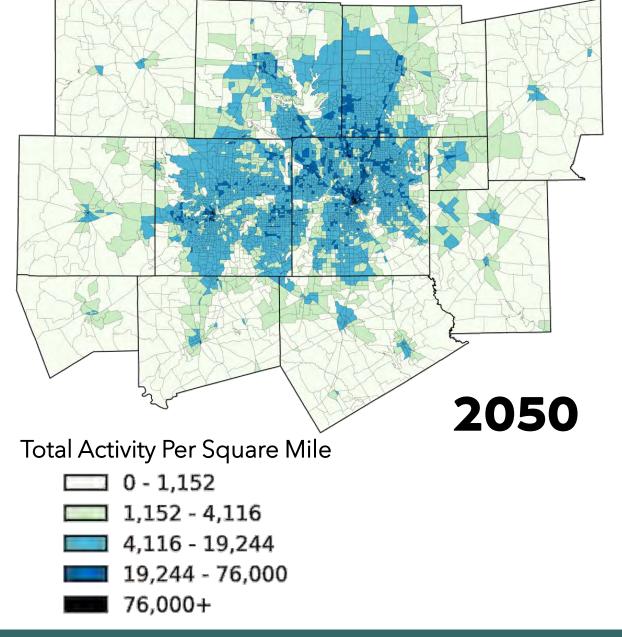
Air Quality Conformity

Plan Timeline

What's in a Plan: Recommendation Types

Policies




Programs

Projects

Forecast 2050 Total Activity

Public input reveals three main concerns: roadway congestion, unsafe active transportation facilities, and demand for expanded transit.

4,882 + Survey responses through December 2024

3,570 + Open-ended responses collected through December 2024

515 + Map Your Experience comments through December 2024

Open-ended survey responses from residents so far reveal that the public is feeling frustrated and limited. The top concern is roadways not keeping pace with growth, coupled with the lack of a robust regional transit network and inability to walk or bike.

What should we solve?

Public input on active transportation is mostly related to safety.

Accessibility and Inclusive Design

Pedestrian Infrastructure

Insufficient sidewalks and safe walking paths

Multimodal Integration

Improved connectivity between transportation modes

Comprehensive Bike Network

Extensive bike lanes and trail systems across the region

Walking and Biking Safety

Intersection Safety

Dangerous crosswalks with poor visibility and high traffic speeds

Car Centric Region

Concerns about vehicular accidents and personal harm influence choice of travel modes and routes

Share the Road

The public desires separated bicycle and pedestrian lanes and driver education/enforcement to share the road on non-separated paths

Transit-Oriented Development (TOD)

Dense Neighborhoods

Desire for compact, mixed-use neighborhoods around transit stations

Walkable Communities:

Need for pedestrian-friendly areas that reduce car dependency

Connectivity

Lack of integration between residential, commercial, and employment centers

Integrating Public Input

Mobility 2050 Policies

- BP3-001: Support the planning and design of a multimodal transportation network with seamless interconnected active transportation facilities that promotes walking and bicycling as equals with other modes.
- BP3-002: Implement pedestrian and bicycle facilities that meet accessibility requirements and provide safe, convenient, and interconnected transportation for people of all ages and abilities.
- BP3-003: Support programs and activities that promote pedestrian and bicycle safety, health, and education.

Mobility 2050 Programs

- BP2-001: Active Transportation Planning and Design
- BP2-002: Active Transportation Network Implementation
- BP2-003: Active Transportation Education and Outreach

Other

- The Pedestrian Safety Action
 Plan identifies priority
 corridors based on crash data
 and collaborates with regional,
 state, and federal partners to
 reduce pedestrian injuries and
 fatalities.
- 6,770 out of the 9,540 existing, funded and planned miles of the Regional Combined Active Transportation Network are off-street paths.

Emerging Focus for Plan

- How does transportation respond to demographic growth trends?
 - Encourage infill development/density to reduce costs and support transit
 - Incorporate Transit 2.0 guidance for policies to support successful regional transit system
- Safety as a priority
- Funding and cost of implementing projects
- Maintaining and maximizing growing transportation assets

Provide your input at www.nctcog.org/M50

Draft Plan Feedback Form Coming Soon

Map Your Experience

Stay Connected

Website

nctcog.org/planinprogress

Social media

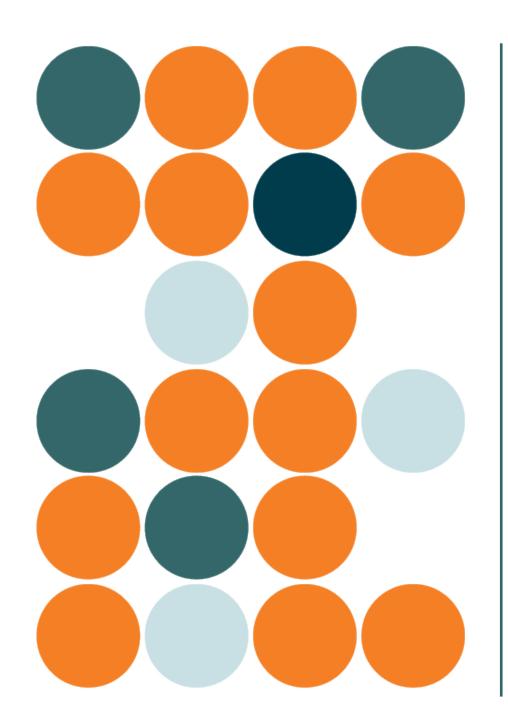
@nctcogtrans#PlanInProgress

Public Meetings

nctcog.publicinput.com/#events

Public Input Platform

publicinput.com/mobility2050


Email Us

mobility2050@publicinput.com

Take the Survey

nctcog.org/mobility2050survey

Contact Us

Amy Johnson

Principal Transportation Planner

ajohnson@nctcog.org | 817-704-5608

Website

www.nctcog.org/PlanInProgress