On-Road Measurement of Running Losses by Remote Sensing

Tim DeFries	Carl Fulper	Scott C. Douglas	Rob Dawson	J. Stewart Hager
Cindy Palacios			Jim Sidebottom	
Nat DeFries			Mike Mallorv	
Sandeep Kishan			5	
ERG ²	USEPA ¹	SMU^3	CDPHE ⁴	HEAT ⁵

¹U.S. Environmental Protection Agency, 2000 Traverwood Dr, Ann Arbor, Michigan 48105
 ²Eastern Research Group (ERG), 3508 Far West Blvd, Suite 210, Austin, Texas 78731
 ³Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, Texas 75275
 ⁴Colorado Department of Public Health & Environment, 15608 E. 18th Ave, Aurora, Colorado 80011
 ⁵Hager Environmental & Atmospheric Technologies, 539 Milwaukee Way, Knoxville, Tennessee 37932

30th CRC Real-World Emissions Workshop March 8-11, 2021

Desire RSD method to measure Running Losses (RL)

RL Lab Dyno Measurements: Certification use

RL Modeling Unreliable: Non-Linear response of RLs to Vehicle Operation and Environmental Conditions

RL Model Validation: Existing on-road RL data?

Light-based Remote Sensing (RSD): High RL detection limits

Can HEAT Laser RSD data be processed to measure on-road RL?

Relate Emission Rate to measurable quantities

from ChemE analogy:

Turnover Time (hr) =

<u>Mass in Vortex (g)</u> Release Rate (g/hr)

what we want:

Emission Rate (g/mile) =

<u>Release Rate (g/hr)</u> Vehicle Speed (mile/hr)

with substitution:

Emission Rate	=	Mass in Vortex (g)
(g/mile)		Turnover Time (hr) * Vehicle Speed (mile/hr)

Use RSD to measure Mass in Vortex (g) and Speed (mile/hr) Use Staged Testing with RSD to evaluate Turnover Time (hr)

EDAR illuminates a Zig-Zag to get its Signal

 Venicle

Portion of Vortex illuminated is inversely proportional to Speed: 5% at 40 mph, 10% at 20 mph, <u>100% at 2 mph</u>

So, RSD Signal (g) gets weaker as Speed increases.

Mass in Vortex (g) \rightarrow Emission Rate (g/mile)

correct EDAR signal for speed:

Mass in Vortex = EDAR Signal (g) * <u>Vehicle Speed (mile/hr)</u> (g) 2 mile/hr

7

substituting the above into the "green" equation provides:

Emission Rate =	EDAR Signal (g)	
(g/mile)	2 mile/hr * Turnover Time (hr)	

Emission Rate is directly proportional to the EDAR signal – if Turnover Time is independent of test conditions

		Vortex Dynamics Expt Use a Massive, Constant Emission Rate so we <u>can</u> see HC in vortex images (206 Tests)	Detection Limit Expt Go to lower Emission Rates where we <u>can't</u> see HC in vortex images (405 Tests)	
	RL Emission Rates (Butane)	Massive and Constant: 10,913 mg/mile	Wide Range: 6821 3411 1705 853 426 213 107 <mark>50*</mark> 0 mg/mile	
	RL Release Locations	fuel fill DOORtop of TANKunder the HOODrear wheel WELL	fuel fill DOOR top of TANK under the HOOD	
	Test Vehicles (drag area)	1: Camry (7.2 ft ²) 3: Highlander (10.7 ft ²) 4: Accent (6.7 ft ²) 5: Tahoe (13.4 ft ²)	 3: Highlander (natural Exh: ~ 0ppmHC) 5: Tahoe (spiked Exh: ~ 400 ppmHC) 	
	Speeds	12 25 37 50 mph	20 40 mph	
	Replicates	4	7	
Note: Test Program conducted SEP 2016 at Bryan, TX * 50 mg/mile = RL certification level				

Signal Processing reveals HC Released and lowers Detection Limit

RL = 1565 mg/mile	RL from fuel fill DOOR
Exh = 400 ppmHC	Speed = 23 mph

Analysis

Blind Source Separation splits De-Noised HC into:

+

Deduced Exh HC

Sum the 512 Pixels in each Scan \rightarrow RL Mass Trace

For each individual test: Calculate Area under a Fit of the RL Mass Trace

Analysis

Simple relationship:

Emission Rate = <u>EDAR Signal (g)</u> (g/mile) 2 mile/hr * 5 s

Conclusions

Large variability in measured RL Emission Rate (g/mile):

A consequence of Noise, Turbulence, Emissions Vortex-Entrainment Efficiency RL determination on Individual Tests will be uncertain

However, Average RL should be reliable for large fleet segments:

Model Year Groups Traffic Modes (congested, flowing) Ambient Temperatures Gasoline Volatility (RVP)

Further Work:

Improve linearity and detection limit Quantify RL of 30,000 EDAR measurements from Denver in OCT 2019

On-Road Measurement of Running Losses by Remote Sensing

<u>Tim DeFries</u> Cindy Palacios	Carl Fulper	Scott C. Douglas	Rob Dawson Jim Sidebottom	J. Stewart Hager
Yuke Zhao			Jim Kemper	
Nat DeFries			Mike Mallory	
ERG ²	USEPA ¹	SMU^3	CDPHE ⁴	HEAT ⁵

¹U.S. Environmental Protection Agency, 2000 Traverwood Dr, Ann Arbor, Michigan 48105
 ²Eastern Research Group (ERG), 3508 Far West Blvd, Suite 210, Austin, Texas 78731
 ³Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, Texas 75275
 ⁴Colorado Department of Public Health & Environment, 15608 E. 18th Ave, Aurora, Colorado 80011
 Hager Environmental & Atmospheric Technologies, 539 Milwaukee Way, Knoxville, Tennessee 37932

30th CRC Real-World Emissions Workshop March 8-11, 2021