CHALLENGES IN AND APPROACHES FOR CONDUCTING HEAVY-DUTY TRUCK ACTIVITY DATA COLLECTION PROGRAMS

Carl Fulper North Central Texas Council of Governments (NCTCOG) January 29, 2021

US Environmental Protection Agency, Office of Transportation & Air Quality National Vehicle and Fuel Emissions Laboratory, Ann Arbor, MI

Overall

- Background
- Understanding of Equipment
- Understanding the Data Gathering Issues
- Understanding Data Streams
- Possible Solutions
- Data Sets Examples

Background and Rationale for Data Collection Programs

- Modeling Heavy-duty Vehicles (HDVs) requires a better understanding of their population, activity, maintenance and emissions
 - Understanding activity is a critical component of characterizing overall emissions
 - HDVs with advanced technologies (i.e., electric vehicles and hybrids) can have different operational patterns than their conventional counterparts;
 - Need to understand the <u>performance of modern emission control</u> <u>equipment under "real world" operational (usage) patterns;</u> and
 - Need to understand <u>"real world" durability and failure rates of</u> <u>emission control components</u>

Types of Vehicles & Networks

On-Road MD and HD Trucks

- SAE J1939 (Most HDVs and Large NRE engines (e.g. construction))
 - More than 14.000 parameters (SPNs) within approximately 2000 parameter groups available for acquisition (open)
 - Wide variety of control and operational information available (historic usage patterns)
- SAE J1962 / J1979
 - Some MD and HD trucks utilize light-duty OBD style systems, per manufacturer's discretion
 - Different information may be available

Note: Various Fuel Types (both CI and SI), Engine Types, Emission Control Components, Powertrains (Hybrids and conventional), Operational Usage, and Model Year Determine Relevant Information to Collect

Considerations When Designing Test Programs

- Study objectives will dictate type of equipment to be used and parameters to be collected:
 - <u>"Long-duration" of second-by-second activity data collection</u>
 requires on-board memory, and may require cellular
 communication; or
 - "Quick snapshot" of in-use faults with diagnostic messages
 (DMs) and/or other vehicle/engine use data fields

Types of Data Logging Equipment

Computer Based Systems

Stand Alone Devices

- Laptops, scanning software, other similar equipment suitable for snapshots
- Smaller, unobtrusive devices may be used for longer ٠ duration continuous data collection programs
- Onboard storage, batch, or real-time transmission to ٠ transfer continuous data.
- Remote monitoring of data to ensure logger is functioning appropriately

Note: There are other devices that can also do some or all of these functions not listed here

Possible Tools for Gathering Data

Equipment	HEMData Logger	Logger Silverscan DieselLaptop H		HEMData Streamer
Equipment Cost	\$600-\$1000	\$150 pigtail costs	\$500 pigtail costs	\$500 plus iPAD cost
Subscription Cost	\$0	\$1800 per year per computer	\$2300 per year per computer	\$0
Data Method	Plug in w/o computer wireless; stand alone or cellular	Dependent on computer	Dependent on computer	Dependent on computer; Wireless
CAN1/CAN2	Yes	Only CAN1	Only CAN1	Yes (new Version)
Memory	4GB, internal	None	None	None
J1939/J1979	Yes with pigtails & older J1708	Yes with pigtails	Yes with pigtails	Yes with pigtails
Time to Acquire ECM Data	< 2 minutes	< 5 minutes	< 5 minutes	< 2 minutes
Data File	Process against database, CSV	Get PDF, XML, TXT	Get PDF, TXT	Process against database, CSV

Logging Protocols

- J1979/J1939/J1708/Others OEM Protocols
- CAN Baud Rate (250K, 500K, other)
 - Some loggers/computers have "fixed" baud rate (need to know its setting)
 - <u>Can trip "Fault Codes" if using wrong baud rate</u>
 - Autobaud rate detection capability (better)
- ECM can have two CAN channels broadcasting data on two different protocols
 - Need to record on both (CAN1 and CAN2)
- Not all ECM or OEM connectors the same & follow standard protocols
 - Might need to make "pigtail" converters to data logger
 - Might need a "pigtail" to capture all data streams

J1979 using J1962 connector multiple baud rates

J1939 green – 500K but can also be 250K

J1939 black – 250K

Selecting and Preparing Data Logging Equipment

- EPA has developed different data gathering protocols for different HDV usages
 - Historic Data on Vehicle (A Vehicle's "Medical History")
 - Developed configuration file to "screen" data fields including DMs (open and requested) in under 1-2 minutes
 - Per-trip or static data could include vehicle information, diagnostic data, fault codes, and overall vehicle operations (e.g. Total miles, total idle time, etc.)
 - Logging Live Data on a Vehicle's Operations Parameters (Presently, gathering ~350 parameters)
 - Developed general data gathering of all fields at 1 Hz rate and DMs (open and requested)
 - Over 14,000 parameters defined by J1939. (Operational, Emission controls, and trip activity data (load, RPM, speed, etc.)

Sample of Parameters – Class 8 HDVs

MY	Vehicle OEM	Engine Manufacturer	# of Parameters	Broad	casting varying list of
2009	Kenworth T660	Cummins ISC	446	param	neters for different vehicle
	Kenworth T680	Cummins ISX 15L	437	coning	urations
	Kenworth T680	PAXCCAR MX 14L	299		
	Freightliner	Cummins ISL	492		
	Freightliner	Cummins ISL	555		Note: Data Stream
	International	Transtar 8600	302		is split between
	International	Prostar	318		two CAN channels
	Volvo	Cummins ISX	330		
	Volvo 670	Volvo D13	CAN1 - 34, CAN 2 - 329		
	Volvo 670	Cummins ISX	342		UNITED STATES

Data Stream Structure - SAE J1939

PGN = Parameter group number SPN = Suspect parameter number FMI = Fault Monitor Identifier OC = Occurrence Count

Many DMs – Diagnostic Messages

Importance	DM#	PGN#	Description
High	DM1	65226	DM1 – Active Diagnostic Trouble Codes (DTCs) (Open)
Medium	DM2		DM2 – Previously Active DTCs (Request)
	DM3	65228	DM3 – Diagnostic Data Clear/Reset for Previously Active DTCs (Request)
Medium	DM6	65231	DM6 - Emission-Related Pending DTCs (Request)
	DM11		DM11 – Diagnostic Data Clear/Reset for Active DTCs (Request)
High	DM12	65236	DM12 – Emission Related Active DTCs (Request)
Medium	DM23	64949	DM23 – Emission Related Previously Active DTCs (Request)
	DM24	64950	DM24 – SPN Support (Request)
	DM25	64951	DM25 – Expanded Freeze Frame (Request)
Medium	DM27	64898	DM27 – All Pending DTCs (Request)
High	DM28	64896	DM28 – Permanent DTCs (Request)
High	DM32	41472	DM32 – Regulated Exhaust Emission Level Exceedance (Request)
	DM41	64863	DTCs – A, Pending (Request)
	DM56		DM56 – Model year & Certification Engine Family (Request)

PGN/SPN Example

- PGN Parameter Group Number
- SPN Suspect parameter Numbers
- PGNs can be made up of one to multiple SPNs
- PGN-61444
 - SPN 899, Engine Torque mode (bit)
 - SPN 4154, Actual Engine percent torque(frictional) (%)
 - SPN 512, Driver's Demand Engine percent torque (%)
 - SPN 513, Actual Engine percent torque (%)
 - SPN 190, Engine Speed (rpm)
 - SPN 1483, Source Address of controlling device for engine control (SA)
 - SPN 1675, Engine Starter mode (bit)
 - SPN 2432, Engine Demand percent torque (%)

Possible Data Fields Acquired for Analysis

- Vehicle Report
 - Meta Data VIN, MY, Manufacturer MY, etc
 - Engine Software #
- DMs Report
 - PGN/SPN with FMI, OC, etc.
 - Fault Indicator Lamps
 - Identifying Possible Maintenance/Tampering Issues
- Usage Patterns (MOVES)
 - Total Mileage, Total Idle Time, Total Time, Total Fuel Used, etc.

Data Analysis Opportunities

- EPA acquired and analyzing a 25,000 HDV dataset that was gathered using the "medical record" method
 - Develop better understanding of "real-world" activity patterns for modeling efforts;
 - Analyzing frequency of DMs/MIL Lights/PGN/SPN/FMI/OC;
 - Any possible relationships within dataset; and
 - Develop a methodology to grade vehicle:
 - "Green" looks to be functioning properly
 - "Yellow" might have possible maintenance problems
 - "**Red**" known maintenance problems

Possible Data Gathering Opportunities

- Develop pilot programs at the State level to investigate gathering HD ECM data
 - Gathering additional data during an existing State's HDV testing program.
 - Little additional time or cost to staff
 - Increased understanding and knowledge of use and maintenance patterns.
- Develop better analytical tools to understand HD ECM data
- Develop better GUI interfaces to evaluate in "real-time" HD ECM data

Many Different Controllers

Controller	Name	SPN Count	Total Vehicles	
<u>0 / 00</u>	Engine #1	5,422,282	13,441	
<u>11/0B</u>	Brakes - System Controller	995,991		
<u>33 / 21</u>	Body Controller	525,095		
<u>15 / 0F</u>	Retarder - Engine	521,326		
<u>3 / 03</u>	Transmission #1	410,673	3,618	Expand and Look
<u>49 / 31</u>	Cab Controller - Primary	336,823		Expand and LOOK
<u>23 / 17</u>	Instrument Cluster #1	334,656	1,312	at Controller 0/00
<u>42 / 2A</u>	Headway Controller	271,370		Engine #1 Details
<u>1/01</u>	Engine #2	210,029	1,114	Lingine #1 Details
<u>61 / 3D</u>	Exhaust Emission Controller	203,637	1,082	
<u>85 / 55</u>	Diesel Particulate Filter Controller	203,597	1 – 2014 International Navistar 860	0
<u>255 / FF</u>	proprietary	110,768		
<u>8 / 08</u>	Axle - Steering	83,634		
<u>150 / 96</u>	reserved	44,759		
<u>58 / 3A</u>	Passenger-Operator Climate Control #2	43,814		
<u>240 / F0</u>	reserved	41,537		
<u>16 / 10</u>	Retarder - Driveline	39,459		
<u>17 / 11</u>	Cruise Control	38,776	Nata, Data francis aver 24	0.42
<u>74 / 4A</u>	Communications Unit, Cellular	36,776	Note: Data from over 24	, 942 vehicles
<u>25 / 19</u>	Passenger-Operator Climate Control #1	36,026	with over 30 different co	ntrollers
<u>133 / 85</u>	reserved	34,845		
<u>37 / 25</u>	Off Vehicle Gateway	33,793		
<u>71 / 47</u>	Chassis Controller #1	28,350		
<u>62 / 3E</u>	Vehicle Dynamic Stability Controller	26,353		TED STA
<u>232 / E8</u>	reserved	23,527		UNICONTRA
<u>160 / A0</u>	reserved	22,582		
<u>132 / 84</u>	reserved	17,828		
<u>140 / 8C</u>	reserved	17,771		THIAL PROTECTION
<u>5 / 05</u>	Shift Console - Primary	17,568		

Controller 0/ 00 – Engine #1 MY2010+ - 13,441 vehicles

<u>SPN</u>	SPN Name	
111	Engine Coolant Level 1	
3,597	ECU Power Output Supply Voltage #1	
2,588	Maximum Vehicle Speed Limit 1	
1,761	** Aftertreatment 1 Diesel Exhaust Fluid Tank Volume	
3,216	<u>** Aftertreatment 1 SCR Intake NOx 1</u>	
3,226	<u>** Aftertreatment 1 Outlet NOx 1</u>	
1,590	Adaptive Cruise Control Mode	
641	Engine Variable Geometry Turbocharger Actuator #1	
97	Water In Fuel Indicator 1	
1,569	Engine Protection Torque Derate	Expand and Look at
2,589	Maximum Vehicle Speed Limit 2	
1,810	Longitudinal Acceleration	SPN 3216 Details
5,848	** Aftertreatment 1 SCR Intermediate NH3	
168	Battery Potential / Power Input 1	
157	** Engine Fuel 1 Injector Metering Rail 1 Pressure	
96	Fuel Level 1	
1,209	<u>** Engine Exhaust Pressure 1</u>	
5,742	** Aftertreatment Diesel Particulate Filter Temperature Sensor Module	
5,743	** Aftertreatment 1 SCR Temperature Sensor Module	
91	Accelerator Pedal Position 1	
3,556	** Aftertreatment 1 Hydrocarbon Doser 1	
2,623	Accelerator Pedal #1 Channel 2	Nata, Data francia ana 24.042 nabialas
84	Wheel-Based Vehicle Speed	Note: Data from over 24, 942 vehicles
3,464	Engine Throttle Actuator 1 Control Command	and over 680 different SPNs
171	Ambient Air Temperature	
563	Anti-Lock Braking (ABS) Active	
2,659	** Engine Exhaust Gas Recirculation 1 Mass Flow Rate	TED STAL
2,791	** Engine Exhaust Gas Recirculation 1 Valve 1 Control 1	Junitary Rec.
609	<u>Controller #2</u>	
3.251	** Aftertreatment 1 Diesel Particulate Filter Differential Pressure	

Summary on SPN 3216 Aftertreatment 1 SCR Intake Nox 1

Summary			
DM	DM Name	Count	
DM01	Active Diagnostic Trouble Codes	392	
DM02	Previously Active Diagnostic Trouble Codes	317	
DM06	Emission-Related Pending DTCs	78	
DM12	Emission-Related Active DTCs	233	
DM23	Emission-Related Previously Active DTCs	200	
DM27	All Pending DTCs	85	Expand and Look
DM28	Permanent DTCs	308	at DM01 Details
FMI	FMI Name	Count	
		50	
2	Voltage Above Normal	58 72	
3	Voltage Above Normal	72	
4	Voltage Below Normal	300	
5	Current Below Normal	21	
9	Abnormal Data of Change	291	
10	Abnormal Rate of Change	338	
11		2 47	Note: Data on 823
12	Failure	47	Vahielee
13	Out of Calibration	0	venicies
14		2	
15	High-reast severe	5	
10		21	
10	Low-least severe	2	UNITED STATES
20	Data Erioi	0 271	ISAN SAL
20	Data Driftod Low	3/1	
21	Condition Exists	/	ARA SCILLE
51	CONDITIONEXISTS	۷.	AL PROTECT

SPN 3216 – Aftertreatment 1 SCR Intake NOx 1

<u>SPN</u>	SPN Name	<u>DM</u>	<u>FMI</u>	<u>FMI Name</u>	<u>Count</u>	<u>Manuf</u>	Year	Engine	Model
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	31	Condition Exists	1	Volvo	2014	Volvo 12.8	VNL
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	31	Condition Exists	1	Volvo	2016	Volvo 12.8	VNM
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	21	Data Drifted Low	50	International	2014	Navistar 12.4	ProStar+
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	2	Erratic, Intermittent, or Incorrect	4	Volvo	2012	Volvo 12.8	VNL
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	2	Erratic, Intermittent, or Incorrect	1	International	2016	Navistar 12.4	ProStar+
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	2	Erratic, Intermittent, or Incorrect	14	International	u2016	Navistar 12.4	ProStar+
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	2	Erratic, Intermittent, or Incorrect	10	Volvo	Note: how a	Need to un particulate	derstand FMI code on
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	2	Erratic, Intermittent, or Incorrect	1	International	a SPN	I relates to m	aintenance
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	2	Erratic, Intermittent, or Incorrect	2	International	2016	Navistar 12.4	ProStar+
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	3	Voltage Above Normal	1	Peterbilt	2015	Paccar 12.9	579
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	3	Voltage Above Normal	1	Peterbilt	2017	Paccar 12.9	579
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	3	Voltage Above Normal	126	Peterbilt	2017	Paccar 12.9	579
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	3	Voltage Above Normal	33	Peterbilt	2017	Paccar 12.9	579
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	3	Voltage Above Normal	1	Peterbilt	2016	Paccar 12.9	579
3,216	Aftertreatment 1 SCR Intake NOx 1	DM01	3	Voltage Above Normal	126	Peterbilt	2017	Paccar 12.9	579

Available Parameters: 24,868 vehicle MY2010+

Diese

Note: Expect a high percentage of vehicles to report key activity and maintenance values

Name	Percent	Unit
Engine Speed (190)	99.9	rpm
Actual Engine - Percent Torque (513)	99.9	%
Engine Torque Mode (899)	99.8	bit
Engine Percent Load At Current Speed (92)	99.6	%
Suspect Parameter Number (1214)	99.6	binary
SPN Conversion Method (1706)	99.5	bit
Amber Warning Lamp (624)	99.5	bit
Failure Mode Identifier (1215)	99.5	binary
Red Stop Lamp (623)	99.5	bit
Occurrence Count (1216)	99.5	binary
Malfunction Indicator Lamp (1213)	99.5	bit
Source Address of Controlling Device for Engine Control (1483)	99.4	SA
Engine Fuel Rate (183)	99.3	l/h
Engine Intake Manifold #1 Pressure (102)	98.7	kPa
Engine Intake Manifold 1 Temperature (105)	98.6	С
Engine Instantaneous Fuel Economy (184)	98.6	km/L
Engine Oil Pressure (100)	98.6	kPa
Engine Coolant Temperature (110)	98.5	С
Driver's Demand Engine - Percent Torque (512)	98.3	%
Barometric Pressure (108)	98.3	kPa
Accelerator Pedal Position 1 (91)	98.2	%
Brake Switch (597)	98.1	bit
Nominal Friction - Percent Torque (514)	98	%
Wheel-Based Vehicle Speed (84)	98	kph
Parking Brake Switch (70)	97.8	bit

Engine Reference Torque (544)	97	Nm
Engine Speed At Point 5 (531)	97	rpm
Engine Percent Torque At Point 4 (542)	97	%
Engine Speed At Point 4 (530)	97	rpm
Engine Maximum Momentary Override Speed. Point 7 (533)	97	rpm
Particulate Filter Active Regeneration Inhibited Due to Inhibit Switch (3703)	97	bit
tertreatment Diesel Particulate Filter Active Regeneration Status (3700)	96.9	bit
Total Vehicle Distance (High Resolution) (917)	96.9	m
Engine Coolant Level 1 (111)	96.7	%
Accelerator Pedal 1 Low Idle Switch (558)	96.5	bit
Diesel Particulate Filter Lamp Command (3697)	96.3	bit
Exhaust System High Temperature Lamp Command (3698)	96.3	bit
Fan Drive State (977)	95.8	bit
Fuel Level 1 (96)	95.3	%
Protect Lamp (987)	95.3	bit
Engine Total Fuel Used (250)	95.3	I
Battery Potential / Power Input (168)	95.2	V
Engine Demand Percent Torque (2432)	94.6	%
Engine Trip Fuel (182)	94.2	l l
ABS/EBS Amber Warning Signal (Powered Vehicle) (1438)	94.1	bit
Front Axle Speed (904)	94	kph
Anti-Lock Braking (ABS) Active (563)	93.9	bit
Relative Speed; Front Axle. Left Wheel (905)	93.9	kph
Aftertreatment 1 Diesel Exhaust Fluid Tank Volume (1761)	93.8	%
Relative Speed; Front Axle. Right Wheel (906)	93.8	kph
Relative Speed; Rear Axle #1. Right Wheel (908)	93.7	kph
Engine Total Revolutions (249)	93.7	r
Relative Speed; Rear Axle #1. Left Wheel (907)	93.6	kph
Aftertreatment Diesel Exhaust Fluid Tank Low Level Indicator (5245)	93.4	bit

EPA's Mini-PEMS Version

Measurement Setup – Sensors, Modules and DAQ*

- * Complete list of components provide in Appendix A
- ** Additional pictures of NOxF sensor in Appendix B

Validation – Fuel Economy – 3.6L Gasoline SUV

Measurement	CO2 Mass (gms/mile)
PEMS	577.8
Mini-PEMS	563.8
Percent Error	-2.4 %

Measurement	Fuel Economy (MPG)
PEMS	15.36
Mini-PEMS	15.80
Percent Error	2.9%

Challenges in Developing and Advancing Mini-PEMS

Future Development – Robust Packaging

expected to be smaller

Dimensions: W21"xH8.5"xD16" Weight: approx. 25 lbs

CRADA & Equipment Loans

- CRADA Cooperative Research and Development Agreements
 - EPA partnerships to conduct research (activity & emissions) on lightduty and heavy-duty vehicles plus nonroad equipment
 - State of Colorado's Department of Public Health & Environment;
 - Texas Transportation Institute (TTI);
 - University of California, Riverside, College of Engineering Center for Environmental Research and Technology (CE-CERT); and
 - State of New Jersey
 - Equipment Loans (EPA has many equipment loans agreements)
 - PEMS (Emission & Activity)
 - PAMS (Data Loggers)

Contact

Carl Fulper PEMS/PAMS Coordinator **Physical Scientist/Chemical Engineer Data Testing Center, Assessment Standards Division Office of Transportation and Air Quality, US EPA** Ann Arbor, MI 48105 734-214-4400 Fulper.carlr@epa.gov

