

Planning and Implementing Utility Cost Reduction Measures NCTCOG

August 28, 2019

Presented By: Saleem Khan, P.E.

TEESI C Engineering

(Texas Energy Engineering Services, Inc.) 1301 S. Capital of Texas Hwy., Suite B-325 Austin, Texas 78746 <u>www.teesi.com</u> (512) 328-2533

Planning for Energy & Water Conservation Projects

- Initial Planning and Research
 Goals
- Resource Allocation and Project Execution
 - Scheduling/timeline
 - ≻Funding
 - Project Delivery Method & Procurement (Goods and services)
 - Pros & Cons
 - Implementation
 - Post implementation follow-up

Objective

Cost Savings

- ➤Measures that save \$
- Example(s): Power Factor Correction, Utility Rates, Purchase Power Agreements (PPA)

Consumption & Cost Savings

- Electric (kWh), Natural Gas (MCF), Water (kGal), etc.
- Example(s): LED Lighting Retrofit, low flow plumbing fixtures

Demand & Cost Savings

- Electric Demand (kW) & electricity billing savings
- Example(s): Thermal Energy Storage, Demand Response Technologies, Onsite generation

Energy Audit Types

Preliminary Energy Analysis
 Initial Energy Audit or Survey
 Walkthrough Survey/Assessment
 Preliminary Energy Assessment (PEA)

Detailed Energy Analysis (DEA)
 Comprehensive Energy Analysis (CEA)
 Investment Grade Audit (IGA)
 Utility Assessment Report (UAR)

ASHRAE categories:
 Level I, Level II and Level III

Energy Consumption Breakdown

* DOE EIA 2003 CBECS - K-12 Schools in West South Central Region (TX, OK, AR, LA)

Water & Wastewater Treatment Plants

WWTPs could account for up to 70% of a Local Government's energy related consumption and costs

Typical Measures and Paybacks Building Systems

Low Cost/No Cost Measures Interior & Exterior Lighting Retrofit Motion Sensors & Day-lighting >HVAC Retrofits >Insulation Commissioning ➢ Water Conservation Solar Thermal Pool Heating Solar PV Arrays

0 to 6 months 2.5 to 10 years 2 to 8 years 7 to 25 years 8 years + 1.5 to 5 years 4 to 8 years 12 to 14 years 15 to 25 years

Typical Measures and Paybacks Building Systems (cont.)

- Cooling Tower Replacement
 VAV Conversion
 Thermal Storage
 Energy Management Control Systems
 Solar Control (Window film, shading)
 Steam Systems Improvements
 Power Factor Improvements
 - 8 to 14 years
 - 6 to 14 years
 - 12 to 20 + years
 - 4 to 12 years
 - 6 years +
 - 3 years +
 - 3 to 8 years

Low Cost / No Cost Measures

Behavioral and operational practices
 Utilization of existing controls capabilities
 Maintenance & Operations (M&O)

➢Payback: 0 − 6 months

7 of 34

Maintenance and Operations

Malfunctioning Photocells

Pipe Insulation Damage

Damaged Fins

Texas Energy Engineering Services, Inc. (www.teesi.com)

Maintenance and Operations (cont.)

Leaking Cooling Tower

Cooling Tower Blowing Down

9 of 34

Maintenance and Operations (cont.)

Vending Machines Running 24/7

Unoccupied Room with Lights and Computers Left On

Maintenance and Operations (cont.)

HILLED WATER PI 480/30

Equipment In "Hand" Mode

EMS Screenshots – AHU VFD Hunting

LED Lighting Retrofits

Typical 2x4 fixtures with florescent lamps

Type A – "Plug & Play" LED tubes
 Utilize existing fixture and electronic ballast

Type B – Ballast Bypass LED tubes
 Remove bypass, "direct-wire"

Type C – Dedicated Driver & LED lamps
 Replace existing ballast with LED driver

➢ Fixture Changeout

HVAC Retrofits

Forecasting replacements vs replace on burnout Split-DX, Rooftop Units, Chillers, Boilers, etc. Payback Considerations \succ First cost vs operating cost Efficiency (EER, SEER, COP, etc.) HVAC Unit replacements R-22 phase out Construction considerations \geq Roofing, structural, etc.

Commissioning (Cx)

 Operate per design intent & energy savings
 New Construction, Renovation, or Retro-Commissioning (RCx)

Existing Continuous Commissioning ®(CC®)
 Energy savings & comfort improvement
 Calculate savings, implement CC® and document
 Payback: 1 – 5 years (typical)

Commissioning (cont.)

Domestic Water Conservation

Low flow faucet aerators and flush valves reduce the amount of water used in lavatories, urinals, and toilets

➢ Faucet aerators − 0.5 GPM (gallons per minute)

- ➢ flush valves 0.5-1.0 GPF (gallons per flush)
- Irrigation systems upgrades
- ➢ Payback: 3 − 8 years

Solar Thermal Pool Heating

Pool water can be heated by pumping the water through a solar tube array.

Traditional method of heating (Boiler) will be back-up

➢ Payback: 12 − 14 years

Solar Thermal Pool Heating

17 of 34

Solar PV Arrays

On-site energy generation using solar photovoltaic array systems reduce peak demand and curtail total energy consumption.

Site Solar Survey

➢ Payback: 15 − 25 years

Thermal Energy Storage

- ► HVAC Application
- ➤Two popular systems
 - ➤Water based
 - ➢Ice based

- ➢No chiller running during on-peak time (Full load shift)
- Some chiller running during on-peak time (Partial load shift)

Power Factor Improvements

\$ Savings (Utility rate w/ power factor penalty)
 Installation of capacitors bank at main service entrance or end use equipment (motors etc.)
 Payback: 3 – 10 years

20 of 34

<u>Typical Measures and Paybacks</u> <u>Water Treatment Plant (WTP) and</u> <u>Wastewater Treatment Plant (WWTP)</u>

WWTP Related O&M Measures 0 to 1 year Dissolved Oxygen Control 2 to 7 years ► High Efficiency Blowers 8 to 12 years ➢ Variable Speed Drives 8 to 15 years Optimize Aeration Design 5 to 10 years Power Factor Improvements 3 to 8 years Smart Meter Applications 5 to 8 years City Mains Leak Sensing Technology 1 to 6 years WWTP Demand Response *

*Dependent on existing load profile and capital used for automation

Survey Plant

Benchmarking WWTP plants

- Energy use tied permitting requirement
- Identification & process power use
- May have one or multiple meters similar to buildings

Utility Meter Mapping

Wastewater Plant - Coarse Bubble to Fine Bubble Aeration Conversion

Coarse Bubble Aeration

Fine Bubble Aeration

23 of 34

Bubble Types

Fine Bubble

Coarse Bubble

High Efficiency Turbo Blowers

➢ High Efficiency, variable speed turbo blowers with integral VFD and air bearings

- Typical blower system efficiency = 55% (approx.)
- Turbo blower system efficiency = 75% (approx.)
- Control system to vary aerator airflow to maintain dissolved oxygen (DO) concentration at optimal value
- System upgrade (blower, VFD, fine bubble, DO sensor) for best results
 Payback: 8 12 years

<u>Wastewater Treatment –</u> <u>Control Dissolved Oxygen</u>

➤TCEQ Criteria : 2.0 mg/l of D.O.

➢ Process Requirements : 0.5 − 1.0 mg/l

➤General Statement:

"Anything over 1.0 mg/l is wasting power"

27 of 34

State Energy Conservation

Funding

- State Energy Conservation Office (SECO)
 - Texas LoanSTAR Program (low interest revolving loan)
 - Funding source for energy & water conservation projects
 - ➢Notice of Loan Fund Availability (NOLFA)
 - <u>https://comptroller.texas.gov/programs/seco/funding/</u>
- Texas Water Development Board
 - <u>http://www.twdb.texas.gov/</u>
- ➢US Department of Agriculture
 - <u>https://www.usda.gov/</u>

≻Other

➢ Bond, M&O, Third-party, ESPC etc.

SECO Resources

- SECO Local Government & Schools Energy Technical Assistance Program
 - Cities, Counties, K-12 & Colleges
 - <u>https://comptroller.texas.gov/programs/seco/programs/local/</u>
 - <u>https://comptroller.texas.gov/programs/seco/programs/schools/</u>

SECO - LoanSTAR Program

- ➢ Funding open to all public entities
- <u>https://comptroller.texas.gov/programs/seco/funding/loanstar/</u>
- Texas Building Energy Code
 - <u>https://comptroller.texas.gov/programs/seco/code/</u>

SECO Website

<u>https://comptroller.texas.gov/programs/seco/</u>

Case Study – New Braunfels Utilities

Cost & Savings Summary for Identified UCRMs

(Preliminary Energy Analysis i.e. **PEA by SECO**. WWTP Measures: Coarse to Fine Bubble Diffusion, Install WWTP Dissolved Oxygen Sensors, Install High Efficiency Variable Speed Turbo Blowers, City-Wide 5/8" Water Meter Changeout)

Approximately 75-80% water meter changeout completed

Case Study – City of San Marcos

Implementation (SECO LoanSTAR Funding)

Project Costs:
Annual Savings:
Simple Payback:

\$1,981,037 \$221,567 8.9 years

(Project Delivery – Traditional Design Bid & Build. Lighting Retrofit w/Motion Sensors, HVAC Replacement, Controls Upgrades/Retrofits, Solar Thermal Heating, Water Conservation Measures, WWTP – replace blower & automate aeration airflow)

Case Study – DFW

City of Dallas (2014-2018)

Energy Project Costs:

Annual Savings:

Simple Payback:

\$17,400,000 (approx.)

\$2,300,000

7.6 years

*The City has completed several ESPC projects **SECO LoanSTAR** funded

City of Fort Worth (2003 - 2013)

Energy Project Costs:	\$67,547,559
Annual Savings:	\$5,939,183
Simple Payback:	11.4 years

* Approx. \$10 Million of projects funded through **SECO LoanSTAR** program, ESPC project

Case Study – City of Laredo

Preliminary Energy Assessment (2017)

Project Costs:	\$7,500,000
Annual Savings:	\$1,776,200
Simple Payback:	4.2 years

Detailed Energy Assessment (2019) & Implementation* (SECO LoanSTAR Funding)

Project Costs:
Annual Savings:
Simple Payback:

\$1,033,588 \$159,420 6.5 years

* Traditional Design-Bid-Build - High Service Pump VFDs & Power Factor Correction. Currently in implementation phase

Saleem Khan, P.E., CxA TEESI Engineering saleem@teesi.com 512-328-2533 www.teesi.com

