Gathering Information for a SRTS Plan

Gathering Information

- School information and student travel modes
- Existing conditions and behaviors
- Behaviors and perceptions

School Information

- Location and grades served
- Attendance boundaries & where students live
- Arrival/dismissal times
- Student travel modes
- Student walk/bike routes
- Parent perceptions
- Policies/programs

Existing Conditions - Environment

- Traffic volume and speeds
- Pedestrian and bicyclist crash data

- Personal safety data and concerns
- Walking and bicycling environment

Existing Conditions - Behaviors

Observe school arrival and dismissal:

- Driver behaviors
- Pedestrian behaviors
- Bicyclist behaviors

Assessing the Ped/Bike Network

What infrastructure is important?

Engineering Treatments and Strategies

Creating safe routes with engineering

- Improve children's safety
- Improve accessibility
- Encourage more bicycling and walking

Walkways and crossings: Prerequisites for walking

Connect to the school

- Consider barriers to walking and biking
- Think about the complete route from door-to-door
- What message are we sending?

Relationships are everything

Focus on the basics

Engineering topic outline

- Around the School
- Along the School Route
- Crossing the Street
- Slowing Down Traffic

School enrollment boundary

School walk zone

Existing conditions map

School zone

STAT ENTER AVE 뚬 TUNLE BRENNER DRIVE 3 AVENUE 'n NER! NATHAN ROAD MONTE MSTA ELEMENTARY WILLOW SCHOOL GLEN HOPE TERRACE CEDAR VISTA FRIAR MILLOWING LANE ----IA ROJO CITA CALLE PLAZA LAN 2 LA CUME

LINCOLN

LINCOLNWOOD

ESSEX

Signing and marking the school zone

- Manual on
- Uniform
- Traffic
- Control
- Devices

School area speed limit signing

Speed feedback signs

School crosswalk signs and warning signs

Fluorescent yellow-green post covers

Parking regulations

Keep signs simple

School pavement markings

Sample school traffic control plan

Engineering topic outline

Around the School

Along the School Route

- Sidewalks
- On-street bicycling
- Pathways
- Connectivity
- Crossing the Street
- Slowing Down Traffic

What's wrong with this picture?

What's wrong with this picture?

Perception versus reality

Sidewalks are essential

Sidewalks on both sides are preferred

Limit driveway crossings

Connections to the school

Sidewalk design criteria

Connect all sidewalks in the school walking route

Accommodate pedestrian desire lines outside of splash zones

Provide sidewalk buffers

No sidewalk buffer

Good sidewalk buffer

Provide wide enough sidewalks

- Recommended minimum: 5'
- Preferred minimum: 6'
- At schools: 8'-10'

Repair sidewalks

Maintain landscaping to provide clear walkways and sight distances

Remove obstacles from sidewalks

Install street lighting

Meet Americans With Disabilities Act (ADA) requirements for universal design

Curb ramp design

 Two ramps per corner

 Eight ramps per intersection

Warning strip – 4' x 2'

Don't build driveways like intersections

Build driveways like driveways

Along the school route: Bikeways

- Local streets
- Bike lanes
- Shoulders
- Pathways

Local streets – where most kids ride

Bicycle lanes

Install bicycle racks

Yes – high school students will bike given the opportunity

Along the school route: Pathways

Success story: Mill Valley path

Connectivity creates a pedestrianfriendly street system

- Reduces walking distance
- Offers more route choices – disperses traffic
- Less traffic = more pedestrian friendly

Connectivity can reduce walking distances and crossings required

Connecting cul-de-sacs

School

No connection between school and neighborhood

Formal and informal connections

Engineering topic outline

- Around the School
- Along the School Route

Crossing the Street

- Shortening crossing distances
- Marking crosswalks
- Creating visible crossings
- Using stop signs and traffic signals

Slowing Down Traffic

Principles for creating safe crossings

- Reduce crossing distance
- Use appropriate traffic control
 - Marked crosswalks
 - Warning signs or flashers
 - Stop signs and traffic signals
 - Crossing guards
- Slow vehicle speeds

Large turn radius

Curb radii: Keeping it tight

Wide, multi-lane roads are barriers

Pedestrian and bicycle bridges

- Expensive
- Often not used
- Consider topography and circumstances

Tools to reduce crossing distance

Curb extensions at crossings

Reduce the crossing distance

Crossing islands

Marking crosswalks

Why install marked crosswalks?

- Indicate a preferred pedestrian crossing location
- Alert drivers to an oftenused pedestrian crossing
- Indicate school walking routes

Where to install marked crosswalks

- Signalized intersections
- School routes

 Uncontrolled crossings (see MUTCD guidelines)

Install high-visibility markings

What the pedestrian sees

What the driver sees (same crosswalk)

High visibility markings

"Multiple threat" crashes

1st car stops to let pedestrian cross, blocking sight lines

2nd car doesn't stop, hits pedestrian at high speed

Solution: Advance stop/yield line

1st car stops further back, opening up sight lines

2nd car can be seen by pedestrian

'Yield here for pedestrian' signs

In-street signage

Source: City of McKinney, 2019

Rectangular rapid flash beacon (RRFB)

- Pedestrian activated (push button or passive detection)
- Beacon is yellow and has a rapid flash
- Yield rates increased from approx.
 20% to 80% (CMF = 0.53)
- Not yet in MUTCD FHWA gave interim approval in 2008.

Rectangular rapid flash beacon

Pedestrian hybrid beacon

- Pedestrian activated
- Solid red phase brings all cars to a stop
- Can reduce pedestrian crashes by 55% (CMF = 0.45) (FHWA)
- In the MUTCD
- Should be strongly considered for all crossings where speed limits are ≥ 40 mph

What's wrong with this picture?

What's wrong with this picture?

Parking restrictions at corners

Better visibility for both drivers and pedestrians

Engineering topic outline

- Around the School
- Along the School Route
- Crossing the Street
- Slowing Down Traffic

Slowing down traffic

High speeds increase stopping distance

Travel Speed vs. Reaction and Braking Distance

High speeds increase ped injuries

Design can invite desired use

Modern roundabout

 Slows vehicles as they enter, travel through and exit.

 Reduces potential conflict points.

Narrow lanes reduce speeds

Use paint to reduce lane width

Speed humps slow traffic on local streets

Raised crosswalks

FHWA references

An Analysis of Factors Contributing to "Walking Along Roadway" Crashes: Research Study and Guidelines for Sidewalks and Walkways

REPORT NO. FHWA-RD-01-101

U.S. Department of Transportation Federal Highway Administration Research and Development Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2206 February 2002

FHWA references

FHWA-SA-18-041 September 2018

Toolbox of Pedestrian Countermeasures and Their Potential Effectiveness

Introduction

This issue brief documents estimates of the crash reduction that might be expected if a specific countermeasure or group of countermeasures is implemented with respect to pedestrian crashes. The orash reduction estimates are presented as Crash Modification Factors (CMFs). Some of the crash reduction estimates are also presented in terms of lefttum crashes, earlien crash servicinies, or total crashes.

Traffic engineers and other transportation professionals can use the information contained in this issue brief when asking the following types of question: What change in the number of pedestrian crashes (and/or other crash types) can be expected with the implementation of the various courtermeasures?

Crash Modification Factors (CMFs)

A CMF is the proportion of crashes that are expected to remain after the countermeasure is implemented. For example, an expected 20 percent reduction in crashes would correspond to a CMF of (1,00-0.20) = 0.80. In some cases, the CMF is negative, i.e. the implementation of a countermeasure is expected to lead to a percentrage increase in crashes.

One CMF estimate is provided for each countermeasure. Where multiple CMF estimates were available from the literature, selection criteria were used to choose which CMFs to include in the issue brief:

- First, CMFs from studies that took into account regression to the mean and changes in traffic volume were preferred over studies that did not.
- Second, CMFs from studies that provided additional information about the conditions under which the countermeasures was applied (e.g. road type, area type) were preferred over studies that did not.

Where these criteria could not be met, a CMF may still be provided. In these cases, it is recognized that the estimate of the CMF may not be as reliable, but is the best available at this time. The CMFs in this issue brief may be periodically updated as new information becomes available.

PEDSAFE

skip navigation links

PEDSAFE

Pedestrian Safety Guide and Countermeasure Selection System

The Pedestrian Safety Guide and Countermeasure Selection System is intended to provide practitioners with the latest information available for improving the safety and mobility of those who walk. The online tools provide the user with a list of possible engineering, education, or enforcement treatments to improve pedestrian safety and/or mobility based on user input about a specific location. [read more]

Resources:

Background – understand what is needed to create a viable pedestrian system.

Crash Statistics – learn about the factors related to the pedestrian crash problem.

Crash Analysis – learn how crash typing can lead to the selection of the most appropriate countermeasures.

Objectives – learn how selected treatments may address many requested improvements to the pedestrian environment.

Implementation – read about the necessary components for implementing pedestrian treatments.

More Info – access additional information through a variety of resources.

Downloads – access print versions of the guide and other relevant materials.

Available Tools:

Selection Tool – find appropriate countermeasures on the basis of desired objectives and specific location information.

Interactive Matrices – view the countermeasures associated with crash types and performance objectives.

Countermeasures – read descriptions of the 49 engineering, education, and enforcement treatments.

Case Studies – review real-world examples of implemented treatments.

Project sponsored by:

U.S. Department of Transportation Federal Highway Administration

site map

Summary

- 1. Focus first on the basics
- 2. Identify and program longer-term improvement needs (e.g. sidewalks)
- 3. Match the treatment to the type of problem
- 4. Provide and maintain facilities along the school route
- 5. Provide safe street crossings
- 6. Slow down traffic speeds

