Asphalt Pavement: Management and Rehabilitation

Learning Objectives

- Overview of pavement asset management
- Applicability of Paver software
- Optimization of asphalt rehabilitation options

Road Map

- Overview of a pavement asset management plan using the Pavement Condition Index (PCI)-(Khankarli, UTA)
- Overview of applicability of PCI to the City of Weatherford pavement asset management program-(Leppla, Weatherford)
- Overview of the Accelerated Pavement Testing (APT) process for HMAC pavement solutions-(Romanoschi/Khankarli, UTA)

Pavement Asset Management

• Background:

- Need to have a systematic approach to prioritize project needs
- Need to balance costs, opportunities and risks with expected performance
- Use of an analytical process with a life cycle component
- Key benefits:
 - Improved financial performance
 - Improved investments decisions, efficiency and effectiveness
 - Improved management of risks
 - Improved transparency and compliance

Pavement Asset Management

- Key success points:
 - Clear mission/vision
 - Alignment with mission
 - Full integration
 - Full commitment

Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys¹

- Organizational goals set the target performance
- Applicable standards:
 - ASTM D6433
 - ISO 55000

Steps in the Rehabilitation Process

Pavement Condition Index (PCI)

- PCI is the quantitative analysis needed to develop the optimal solution
- PCI uses a scale of 0-100 with 100 being the best
- It is based on type, severity and extent of "individual" defects to yield 'deduct' points subtracted from 100
- A correction factor is used to account for the combination of different distresses

What do you measure to determine pavement condition?

- Surface Distress
 - Collected by visual survey, Image processing, photo log
 - In practice, the condition is described by quantifying defects:
 - Type
 - Severity
 - Extent
- Structural Integrity
 - Falling Weight Deflectometer (FWD)
- Ride Quality
 - Observer rating
 - Vehicle Response Meter
 - Profile Measurement
- Skid Resistance
 - Portable skid tester
 - Rolling/locked wheel

G. A. Khankarli

Pavement Condition Index (PCI)

	Pavement Condition Rating			 100	
		Distress		85	Good
		Quantity		70	Satisfactory
istress ype		▼ PCI		55	Fair
			40	Poor	
		Distress		25	V. Poor
		Severity		10	Serious
				0	Failed
		PCI Conce	ept Scale		

Applicability of PCI to the City of Weatherford's AM Program

Overview:

- 189 miles of roadway
- \$1.3M maintenance budget

Implementation

- Why is there a need?
 - Prioritize efforts
 - Develop annual budget
 - Strengthen Community
- Pavement Survey
- Software...Integration with Cityworks and MicroPaver
- Day to day maintenance work needs to reflect O.C.I.

Weatherford/

May 23, 2018

PWR

UTA

Overall

- Approximately 6 miles of road maintenance annually
- Community Goal: Road Network O.C.I. >65

	Total Segments	1920 (189 Miles))
Full Depth Rehabilitation	0-50	346	18%
Overlay	51-70	330	18%
Preventative Maintenance	71-90	535	28%
Limited Action	91-100	708	37%

PWR May 23, 2018 Weatherford/ UTA 14

Current Pavement Condition

PWR May 23, 2018 Weatherford/ UTA

USE of APT for Optimal HMAC Solutions

- Standard approach
 - Trial/error
 - "This is how we have done it in the past"
- APT concept: APT is generally defined as "a controlled application of a realistic wheel loading to a pavement system simulating long-term, in-service loading conditions".
- APT advantage:
 - It uses of a test track with actual traffic and/or a specialized load frame that applies an adjustable weighted load in a linear or circular setup.
 - It allows the monitoring of a pavement system's performance and response to accumulation of damage within a short time frame.
- Can be customized to locality through field testing prior to implementation of the conceptual solutions
- This ws for cost savings realization

USE of APT for Optimal HMAC Solutions

- Standard approach
 - Trial/error
 - "This is how we have done it in the past"
- APT concept: APT is generally defined as "a controlled application of a realistic wheel loading to a pavement system simulating long-term, in-service loading conditions".
- APT advantage:
 - It uses of a test track with actual traffic and/or a specialized load frame that applies an adjustable weighted load in a linear or circular setup.
 - It allows the monitoring of a pavement system's performance and response to accumulation of damage within a short time frame.
- Cost savings realization
- Can be customized to locality through field testing prior to implementation

USE of APT for Optimal HMAC Solutions

Example Savings on a TxDOT Project

- Experiment : Evaluated the fatigue cracking, reflection cracking and rutting resistance of four asphalt surface mixes: one with no recycles material, one with 19% RAP, one with 15%RAP and 3%RAS and one mix with 15%RAP and 3%RAS but designed with the Balance Mix Design (BMD) concept
- <u>Value</u>: Since approximately 10 million tons of HMA with RAP/RAS is placed every year in TxDOT projects, at an average cost of \$70 per ton, only a 5% performance increase of these mixes due to the implementation of the research findings from this project brings an estimated 35 million dollars in annual savings to TxDOT
- This approach may result in further optimization of the use of your resources

Summary

- Using an integrated Asset Management program will help optimize use of scarce resources while providing longer performing pavements
- Use of an APT customization approach will help you with the optimized use of your scarcely available funds
- A pooled effort can be used to perform the APT test

• THANK YOU!

Other References

- North Central Council of Governments (NCTCOG). 2017. *Standard Specifications*. NCTCOG
- Texas Department of Transportation (TxDOT). 2014. Standard Specifications for Highways and Bridges. TxDOT
- ASTM D 6433, 2013, Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. ASTM International, West Conshohocken, PA
- BSI ISO 55000, 2015. Asset Management: Overview, Principles and Terminology. BSI Standards Limited, Geneva, Switzerland
- PAVER Asphalt Distress Manual, US Army Construction Engineering Laboratories, TR 97/104, June 1997.