

Energy Accounting & Benchmarking

Presented by: Saleem Khan, P.E., CxA

May 23, 2019

TEESI C Engineering

(Texas Energy Engineering Services, Inc.) 1301 S. Capital of Texas Hwy., Suite B-325 Austin, Texas 78746

> www.teesi.com (512) 328-2533

Welcome

Texas Energy Engineering Services, Inc. (www.teesi.com)

Energy Accounting – Why?

Compare energy consumption and cost

 Over time and among other facilities

 Identify energy spikes and billing errors
 Prioritize energy capital investments
 Evaluate progress and communicate results
 Create incentives for energy management
 Improve energy budget forecast
 Keep track of changes

Getting Started

Setup a team and assign roles

Allocate time and resources

Establish contacts

- Utility account representative
- Accounting/Finance department
- Gather all utility accounts and facility information
 - Electric, natural gas, propane, water, etc.
 - > Work to optimize procedure
 - Setup data recording frequency
 - > Reduce double entry and help streamline the procedure

Poll Question:

Do you or does your organization conduct meter mapping?

Identify Utility Meters

- Identify all meter locations and determine which facilities they serve
- Create a utility meter list and utility meter map
- Determine if meters serve multiple facilities
- Group facilities in a logical manner according to the utility meters served
- Grouping facilities by the utility meters served will help in accurately benchmarking the facilities

Identify Utility Meters Mapping

| Energy Accounting & Benchmarking

Identify Utility Meters Mapping (cont.)

Gather Facility Data

 \blacktriangleright Record building square footage (sf) >Where can I get the square footage data? Keep track of building additions and renovations Identify operations and schedule changes Temperature setpoints Heating & cooling Occupancy type / usage **Operating hours**

Gather Facility Data (cont.)

Not required but good to have

General description of HVAC and other energy using equipment

- Number of occupants
- HVAC (Electric heat or Gas heat)
- Number of computers
- Kitchen appliances (Gas or Electric)

Record major equipment replacement

Gather Utility Data

Establish baseline

> At Least One Calendar Year (12 Consecutive Months)

Review Monthly Invoices

Scanned Invoices, Tracking Spreadsheets, Software, Contact the Utility Provider

➢Electric

Consumption (kWh), Peak Demand (kW), etc.

➢Natural Gas

►Water

Chilled Water & Heating Hot Water/Steam

Why Btu's?

Energy consumption is expressed in Btu's to allow for consumption comparisons among fuel types that are measured in different units

≻kWh to BTUs

- ➢ 1 KWh = 3,412 Btu
- Convert 2,000 kWh to Btu's
 - 2,000 kWh * 3,412 Btu/kWh = 6,824,000 Btu's

► Natural Gas Consumption to BTUs

- 1 Cubic Foot of N. Gas = 1,030 Btu's
- 1 CCF = 100 Cubic Ft = 103,700 Btu's
- 1 MCF = 1,000 Cubic Ft = 1,037,000 Btu's

➢Propane to BTUs

- 1 Gal Propane = 91,600 Btu's
- 1 Cubic Ft Propane = 2,500 Btu's

<u>Establish Energy Performance Indices</u> (Buildings)

Energy Use Index (EUI)

- Total annual electric and natural gas usage
- Btu/SF/Year
- kBtu/SF/Year , Why "k"?
 - 68,000 Btu/SF/ Yr is the same as 68 kBtu/SF/Yr

Energy Cost Index (ECI)

Total annual electric and natural gas cost (all fuels)
 \$/SF/Year

<u>Establish Energy Performance Indices</u> (WWTP)

Energy Use Index (EUI)

Annual energy usage divided by average effluent flow
 kBtu/GPD/Year

Energy Cost Index (ECI)

Annual energy cost divided by average effluent flow \$/MGD/Year

Normalization

>Other factors influence EUI & ECI for WWTP

such as influent biological oxygen demand (BOD) levels, nutrient removal, etc.

Texas Energy Engineering Services, Inc. (www.teesi.com)

Baseline & Performance Tracking

Energy Utilization Index

Energy Cost Index

Other Energy Performance Indices

Other indices
 kWh/SF
 kWh/Occupant
 \$/Occupant
 Btu/Occupant

Used to compare building energy performance

Weather normalization

Poll Question:

Do you or does your organization actively track electric demand?

Texas Energy Engineering Services, Inc. (www.teesi.com)

Electric Demand

>Not typically tracked, but can be beneficial

Larger commercial buildings may represent 30-50% of the electric cost

Additional advantage to tracking demand is the ability to calculate a building's load factor

Identify Peak Demand times with interval data

Electric Demand

➢Peak power draw (kW)

Demand charges (\$/kW)

Load Factor Analysis

The ratio of average kW to peak kW in billing period

Represents consistency of facility usage

Building ABC

Example Interval Demand Data

Peak Day Profile Examples

Texas Energy Engineering Services, Inc. (www.teesi.com)

20 of 36

State Energy Conservation Office

Poll Question:

Do you or does your organization actively track water usage?

Texas Energy Engineering Services, Inc. (www.teesi.com)

Water Consumption and Performance

Develop water baseline

Performance indices
 Total annual water consumption per square foot
 Gallons/ft²/Year

Total annual water consumption per occupant
Gallons/occupant/day

Budgeting

One of the important functions of an Energy Manager

Energy accounting tools

- Historical consumption and costs
- Forecast consumption and costs

Energy management activities

- Staffing and manpower
- Equipment
- Energy retrofits

Energy Budgeting Forecasting

Estimating future utility budget:

Assume you have a 100,000 ft² (SF) facility and your total annual energy costs are \$100,000 per year. There will soon be a 20,000 ft² addition to the facility next year.

What will be the estimated electric budget for the building addition (similar occupancy, usage, rates, HVAC/lighting systems, etc.)?

Energy Budgeting Forecasting (cont.)

Existing square footage (SF): 100,000 ft² Annual energy costs last year: \$100,000 Facility addition square footage (SF): 20,000 ft²

Calculate annual energy cost index (ECI): $ECI = \frac{\text{Annual Energy Cost}}{\text{Square Footage}} = \frac{\$100,000/yr}{100,000 \text{ ft}^2} = \$1.00/\text{SF}$

Projected additional energy costs for next year:
ECI * Total Square Footage for Addition
= \$1.00/SF * (20,000 SF) = \$20,000/yr

<u>Simple Payback</u>

Example of measure of worth is to calculate the simple payback (years)

Simple payback = initial cost / annual savings

Determines the number of years required to recoup the cost of the initial investment

> The annual savings can other quantifiable savings

<u>Simple Payback (cont.)</u>

Example payback calculation:

It costs \$10,000 to retrofit existing T8 linear fluorescent lighting to LED lighting at your building. The estimated annual energy savings are calculated to be \$1,500/year. What would be the simple payback for the LED retrofit project?

Simple Payback Calculation

Total Project Cost: **\$10,000**

Annual Energy Cost Savings: \$1,500/yr

Simple Payback (years) = $\frac{Project Cost [\$]}{Annual Savings \left[\frac{\$}{yr}\right]}$

$$>$$
Payback = $\frac{\$10,000}{\$1,500/yr}$ = 6.6 years

>Other factors (maintenance, buydown, rebates etc.)

Cumulative Savings Simple Payback

Utilize the savings of multiple projects to improve the overall "cumulative" payback.

Project	Project Cost (\$)	Project Savings (\$)	Simple Payback (Years)
HVAC Replacement	\$100,000	\$6,500	15.4
Lighting Retrofit	\$75,000	\$18,750	4
Total:	\$175,000	\$25,250	7

State Energy Conservation Office

Texas Energy Engineering Services, Inc. (www.teesi.com)

Texas Energy Engineering Services, Inc. (www.teesi.com)

Poll Question:

How do you track your energy?

Texas Energy Engineering Services, Inc. (www.teesi.com)

Energy Accounting Software

Energy Accounting is an important practice to monitor energy consumption for facilities

Various software tools are available in the market & some are FREE

ENERGY STAR Portfolio Manager, spreadsheets, commercially available software etc.

Energy Accounting Software

Energy accounting system benefits include

- Maintain historical data and set goals
- Track changes
- Budget energy costs more accurately
- Evaluate energy program
- Identify and correct anomalies early
 - Weather, floor area, operational changes, etc.

Communicate RESULTS

What is Portfolio Manager?

Developed by EPA and DOE as part of ENERGY STAR Program

Online energy and water tracking tool

Basic Meter Information								
✓ Monthly Entries								
	Display Year(s):							
		Start Date	End Date	Usage kWh (thousand Watt-hours)	Cost (\$)			
		1/1/2014	1/31/2014	273,600	37,094.00			
		2/1/2014	2/28/2014	273,000	37,011.00			
		3/1/2014	3/31/2014	311,400	41,390.00			
		4/1/2014	4/30/2014	324,000	43,452.00			
		5/1/2014	5/31/2014	425,400	51,521.00			

 SECO Schools and Local Government program
 Energy Technical Assistance & Preliminary Energy Assessments

LoanSTAR (Funding source)

➢Other programs

Questions?

Saleem Khan, P.E., CxA TEESI Engineering (512) 328-2533 <u>saleem@teesi.com</u> <u>www.teesi.com</u>

Stephen Ross State Energy Conservation Office (SECO) Office: 512-463-1770 <u>stephen.ross@cpa.texas.gov</u> <u>https://comptroller.texas.gov/programs/seco/</u>

Texas Energy Engineering Services, Inc. (www.teesi.com)