

North Central Texas Council of Governments

SECO – Energy Topics

Funding Opportunities and Select Analysis

Nov 1, 2018

www.jacobs.com worldwide

Introductions

- Welcome
- Presenter Introductions
- Thanks to NCTCOG & Texas Energy Aggregation
- Introduction to the State Energy Conservation Office (SECO)

1. Overview of SECO

- SECO Schools and Local Government Program
- SECO LoanSTAR Revolving Loan Program
- 2. Changes in HVAC Design
 - Schools and Local Governments Considerations
- 3. Utility Rate Analysis
 - Basic Method

North Central Texas Council of Governments

SECO – Schools and Local Governments Program

RENEWABLE PROJECTS QUALIFY

www.jacobs.com worldwide

https://comptroller.texas.gov/programs

/seco/

Schools

STATE ENERGY CONSERVATION OFFICE

SECO partners with Texas local governments, county governments, public K-12 schools, public institutions of higher education and state agencies, to reduce utility costs and maximize efficiency. SECO also adopts energy codes for single-family residential, commercial, and state-funded buildings.

SECO Reports

Remote Energy Audits

home » programs » seco » programs » local

Programs

TECHNICAL ASSISTANCE FOR LOCAL GOVERNMENTS

SECO makes energy engineering expertise available to political subdivisions in Texas through its Technical Assistance Program (TAP). Eligible public entities include municipalities, counties, and other special-purpose districts such as port and transit authorities and airports.

SECO contracts with leading engineering firms having a high degree of technical knowledge. They provide customized, on-site, energy-related services across a broad spectrum, ranging from basic consultation to feasibility studies.

Officials of eligible entities may request assistance with either energy or water-related technical matters. Upon determination that the requested services are reasonable and within the contractors' scope of work, SECO will assign an engineer to contact the officials to determine the level of service necessary to provide assistance. There is no charge to the entity.

How to Apply

To initiate participation in the program, complete the Technical Assistance Request Form and email it to Stephen Ross.

Download Technical Assistance Request Form (PDF)

 Prechnical Assistance

 Form# 50-855

Technical Assistance Eligibility

The State Energy Conservation Office (SECO) provides free technical assistance for existing public facilities and infrastructure. Eligible entities include municipal and county governments, public school districts, county hospitals, port authorities, major airports, public water authorities and municipally owned utilities. Leased or rented facilities and infrastructure are not eligible for this service.

Principles of Agreement

- By submitting this request form, the entity listed above must agree to: • select a contact person to work with SECO and its designated contractor to establish an energy policy and set realistic
- energy efficiency goals;
- allow SECO's designated contractor to provide walk-through assessments of selected facilities;
- schedule a time for SECO's designated contractor to make a presentation on the assessment findings to key decision-makers; and
- allow SECO to post portions of this report on its website

Additional Questions

Has this organization used SECO's technical assistance or PEA services in the past?	Yes	O No
Is the primary contact familiar with SECO's LoanSTAR revolving loan program?	O Yes	O No
Has this organization used SECO's LoanSTAR revolving loan program in the past?	O Yes	O No

Signature

For more information about TAP, contact Program Manager Stephen Ross.

Independent School Districts

Total Square Feet Assessed: 28M sq ft

Annual Energy Savings: 213,266 MMBtu

Annual Water Savings:

71 Million Gallons

Identified Potential Annual Savings (2014 – 2016)

North Central Texas Council of Governments

SECO – LoanSTAR Revolving Loan Program

www.jacobs.com worldwide

STATE ENERGY CONSERVATION OFFICE

SECO partners with Texas local governments, county governments, public K-12 schools, public institutions of higher education and state agencies, to reduce utility costs and maximize efficiency. SECO also adopts energy codes for single-family residential, commercial, and state-funded buildings.

Other Funding Resources

Energy Reporting

State Agencies and Institutions of Higher Ed. Local Government Utilities Schools

1	-
_	
_	
_	
_	K
_	

Programs

Alternative Fuels Program Clean Energy Incubators Industrial Energy Efficiency Innovative Energy Demonstration Program Local Governments Program Schools Program State Agency and Higher Ed. Program Pantex Program

Resources

Combined Heat and Power in Texas Energy Efficiency Best Practices Guide Energy Savings Performance Contracting SECO Reports Remote Energy Audits

https://comptroller.texas.gov/programs /seco/

Energy Codes

Training & Code Compliance Energy Code Adoption Process Code Contacts Commercial & Multi-Family Construction Single-Family Construction State-Funded Buildings Local Ordinances Texas Water Conservation Standards

About Us

Contact Us Sign up to receive updates 🗷

Availability and Interest Rates

- Issuance: October 19, 2018
- Deadline: August 31, 2019 at 2:00 p.m. CT
- Maximum Loan Amount: \$8.0 million
- Maximum 3 loans per borrower per application period
- <u>Recent</u> NOLFA Interest Rates
 - 2% interest
 - 1% interest (ARRA restrictions and reporting)

300 loans, Over \$400 million

Borrower	Number of Loans	Average Simple Payback (years)
K-12 Public Schools	134	8
State Agencies	72	7
Local Governments	57	9
Higher Education	14	9
Hospitals	13	8

Borrower	Number of Design Build or Design Bid Build Contracts	Number of Energy Savings Performance Contracts
K-12 Public Schools	126	8
State Agencies	59	13
Local Governments	41	16
Higher Education	13	1
Hospitals	12	1

North Central Texas Council of Governments

Texas State Energy Conservation Office (SECO) https://comptroller.texas.gov/programs/seco

Dub Taylor - Director 512.463.8352 <u>dub.taylor@cpa.texas.gov</u>

Stephen Ross – Schools and Local Governments 512.463.1770

stephen.ross@cpa.texas.gov

Eddy Trevino – Manager; LoanSTAR 512.463.1876 <u>eddy.Trevino@cpa.texas.gov</u>

North Central Texas Council of Governments

HVAC Design Changes

Schools and Local Governments Considerations

Nov 1, 2018

Presented by:

Mack Wallace, PE Program Manager Jacobs Engineering Group, Fort Worth, TX

www.jacobs.com worldwide

What's Happening?

Changes in HVAC Design And What they mean to you

From 2004 to 2013, Eight Climate Zones for 90.1

Figure B-1 Climate Zones for United States Locations (Page 134 of Std. 90.1-2010)

ASHRAE 90.1 and the IECC agreed on this map

New 9 Climate Zones— Standards 169-2013 and 90.1-2016 New for 2016 Marine (C)

The IECC 2018 did not change climate zones

50% AEDGs 7 years old

Posted originally, 4/28/11 Reposted withminor changes, 9/27/11 Reposted with errata dated 2/19/14 incorporated, 2/19/2014

Advanced Energy Design Guide for Small to Medium Office Buildings Achieving 50% Energy Savings Toward a Net Zero Energy Building

Net Zero - 2018 AEDG – Schools First

Posted originally, 1/11/2018 Reposted with errata dated 1/31/18 incorporated, 2/1/2018

ACHIEVING ZERO ENERGY Advanced Energy Design Guide for K–12 School Buildings

JACOBS

Target Site EUI

6 | Advanced Energy Design Guide for K-12 School Buildings

Right here in DFW – page 21 of the AEDG

RICHARD J. LEE ELEMENTARY SCHOOL

The Coppell Independent School District (CISD) set out to construct a sustainable 21st Century school that is sustainable, while providing the best educational environment for the students. The floor plan is arranged in eight "neighborhoods" with collaborative teaching spaces that each open up into a large multipurpose learning space.

The 358 KW solar photovoltaic (PV) system is composed of approximately 1100 panels, all roof mounted. The entire PV system was constructed within the allocated budget.

KEY ENERGY EFFICIENCY AND SUSTAINABLE FEATURES

- Variable-speed dedicated outdoor air system (DOAS) with demandcontrolled ventilation to provide appropriate outdoor air to the learning environment and control building CO₂
- All spaces can control their temperature and lighting
- LED lighting with 0.60 W/ft² lighting power density (LPD)
- Orientation and windows to maximize natural lighting and students' views
- 2900 W wind turbine
- Recycled products integrated into design ٠
- Reduced construction waste. ٠
- 20,000 gal rainwater storage tank for flushing toilets and urinals ٠

Changing in Your Building – HVAC Cost %

How many of you have a humidistat in your building

Outside Air DDC Controls Variable Everything

Latent Loads

Lighting Envelope Equipment

Sensible Loads

Richard J. Lee

- Used DOAS to control outside air normally largest cooling load in DFW
- Used Demand-Controlled Ventilation to reduce outside air
- Used Geothermal HVAC to reduce cost of rejecting heat and serve the loads with water instead of air.
 - Do not blow air for long distances (2018 Decentralized systems)
 - AEDG 2018 Single zone chilled water fan coils, VRF systems, and GSHP
 - What happened to VAV systems?
- You have to use DOAS in the DFW area
- You do not have to use Geothermal

ASHRAE 62.1 VAV rules – Most popular System

15F max difference between supply and T stat 100 FPM 4' from floor Or 20% more OA to supply warm air and return warm air at the ceiling

2

1

% OA supplied to space is set by the space that needs the highest % served by the AHU

3

Low sensible load. Cooling CFM at full load less than 0.5 CFM Part load down to 0.2 CFM cooling. Heating CFM more than the 50% allowed by ASHRAE 90.1 People want to have air movement in the space. Water flow very low. Series Fan Powered Boxes are needed.

Single Zone DOAS – to the room / to the unit

Multiple Zone – to the room / to the unit ASHRAE 62.1

Use Energy Recovery – Everybody Does

Double Wheel DOAS

New RTUs – Variable Speed Compressors

Questions

mack@wisewatt.com

North Central Texas Council of Governments

SECO – Basic Utility Bill Analysis

Nov 1, 2018

Presented by:

Carlos Teran, PE Senior Energy Engineer Jacobs Engineering Group, Houston, TX

www.jacobs.com worldwide

- Typical billing parameters for analysis:
 - Supply
 - Customer Charges
 - Supply Charges (kWh)
 - Time-of-Use (Month, Day, Hour)
 - Consumption Blocks
 - Delivery
 - Transmission & Distribution (kW, kWh)
 - Time-of-Use (Month, Day, Hour)
 - NCP (kW)
 - 4CP (kW)
 - Demand Ratchet (kW)
 - Power Factor (kW)
 - Riders (kW, kWh)
 - Taxes

34

Sample Bill

Section in the section of	Rate Schedule for	TXU/Oncor Tarif	f SS > 10 kW Non IDR NCP for Electric
Component	Charge	Unit	Description
Customer Charge:	\$6.80	per month	Base Charge
	\$22.14	per month	Meter Charge
	\$11.59	per month	Energy Efficiency Charge
	\$3.980	per month	Advanced Meter Charge
Consumption Charge	\$0.05974	per kWh	REP charge
	\$0.000654	per kWh	System Benefit Fund
	-\$0.00025	per kWh	RTSPP Settle Charge
Demand Charge	\$4.38000	per Billed KW	Distribution Charge (Annual Load Factor > 26%)
	\$5.01000	per Billed KW	Distribution Charge (Annual Load Factor 21%-25%)
	\$5.16000	per KW	Distribution Charge (Annual Load Factor 16%-20%)
	\$5.47000	per KW	Distribution Charge (Annual Load Factor 11%-15%)
	\$6.10000	per KW	Distribution Charge (Annual Load Factor 0%-10%)
	\$2.22297	per kW	Transmission Cost Recovery Factor
	\$0.17100	per Billed KW	Transition Charge TC1
	\$0.26400	per Billed KW	Transition Charge TC2
	\$0.007521	per Billed KW	Rate Case Surcharge
	\$0.04400	per Billed KW	Nuclear Decommission Charge

Time-of-Use

Winter (Oct-May)

\$1,000.00/month

\$0.0369/KWH

\$0.0329/KWH

\$0.01104/KWH

\$0.00271/KWH

SUMMARY OF BILLING COMPONENTS:

Summer (Jun-Sep)

\$1,000.00/month

Customer Charge: Energy Charges:

> Block 1, first 250 KWH/KW: Block 2, all remaining KWH: Average Fuel Adj. Cost¹: Average Reg. Adj. Cost¹:

Demand Charges:

Direct Demand Charge:

\$0.0369/KWH \$0.0329/KWH \$0.01104/KWH \$0.00271/KWH

Summer \$10.45/KW <u>Winter</u> \$8.30/KW

Riders

II.	Nuclear Decommissioning Charge:	See Rider NDC	per kWh	
111.	Transmission Cost Recovery Factor:	See Rider TCRF		
IV.	Energy Efficiency Cost Recovery Factor:	See Rider EECRF		
۷.	Competitive Meter Credit:	See Rider CMC		
Oth	er Charges or Credits			
VI.	Rate Case Expense Surcharge:	See Rider RCE	per kWh	
VII.	Remand Surcharge:	See Rider RS	per kWh	
VIII	. Capital Structure Refund:	See Rider CSR	per kWh	
IX.	Distribution Cost Recovery Factor:	See Rider DCRF	per kWh	
X.	Tax Refund Factor:	See Rider TRF	per kWh	

Power Factor

Meter Type Dates Current Meter Read	Previous Meter Read	Multiplier	kWh Us	age kW Dema	Power Factor
091692353LG ACT 03/18 - 04/16 5919.03	5798.99	1500	180,03	9.60 8	90.00 0.9
Current Charges		C	Qty	Rate	Amount
Electric Service			-		
CKWH : Commercial Energy		180,039	.60	0.05530	\$9,956.19
HUB-LZ Basis Charge		180,039	.60	0.00291	\$523.97
TDSP : TDSP Pass-Through Charges					\$8,587.00
DIS001:Distribution Charge		93	9.00	5.01000	\$4,704.39
MSC025:Nuclear Decommissioning		1,222	2.00	0.04400	\$53.77
BAS001:Basic Customer Charge			1.00	6.80000	\$6.80
IRN002:Firm Point to Point Transmiss	ion Service	84;	5.00	3.77038	\$3,185.97
BAS003:Delivery Point Charge			1.00	22.14000	\$22.14
MSC041:Energy Efficiency Cost Recov	ery Factor	180,03	9.00	0.00035	\$63.55
(EECRF)	-				
MSC049:Rate Case Expenses Surcharge		1,222	2.00	0.01140	\$13.93
MSC029:Recovery of securitzed portion	of stranded	1,222	2.00	0.17200	\$210.18
MSC036:Recovery of securitized regulate	orv assets -	1,22	2.00	0.26700	\$326.27
stranded costs (TC2)		.,		0.207.00	<i>QUEUE</i>
Total Current Charges					\$19,067.16

Unmetered Facilities

I. Unmetered Facilities

Points of Delivery (POD) Charge: \$57.41 per governmental entity served by the Competitive Retailer.

Lamp	Watts	Lumens	kWh	Schedule			Rectangular*	Post-Top*
				Α	B *	C* and D		
Metal Halide	150	14,000	65	\$12.42	N.A	\$1.43	N.A.	N.A.
	175 (see note 2)	14,000	65	\$12.42	\$1 8.80	\$1.43	N.A.	N.A.
	250	25,000	100	\$14.26	\$22.29	\$2.13	\$36.62	N.A.
	400	36,000	160	\$14.74	\$23.04	\$3.34	\$36.62	N.A.
	1,000*	110,000	370	\$17.75	\$26.03	\$7.56	\$40.98	N.A.
LED/Low Wattage (See Note 3)	100		40	N.A.	N.A.	\$0.92	N.A.	N.A.

