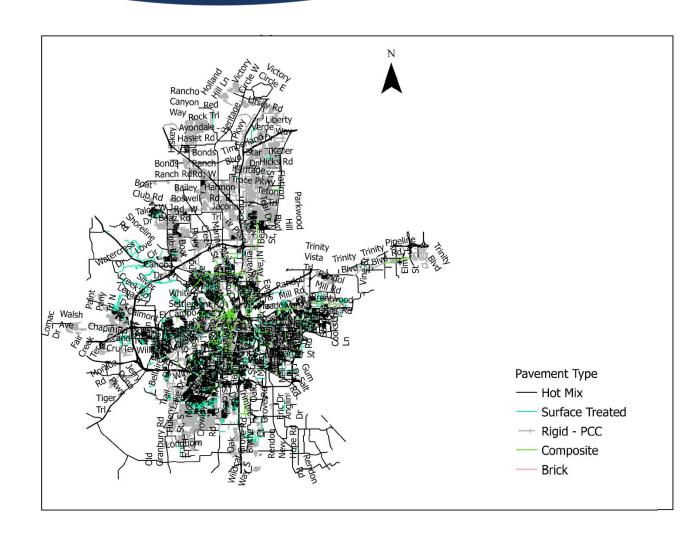


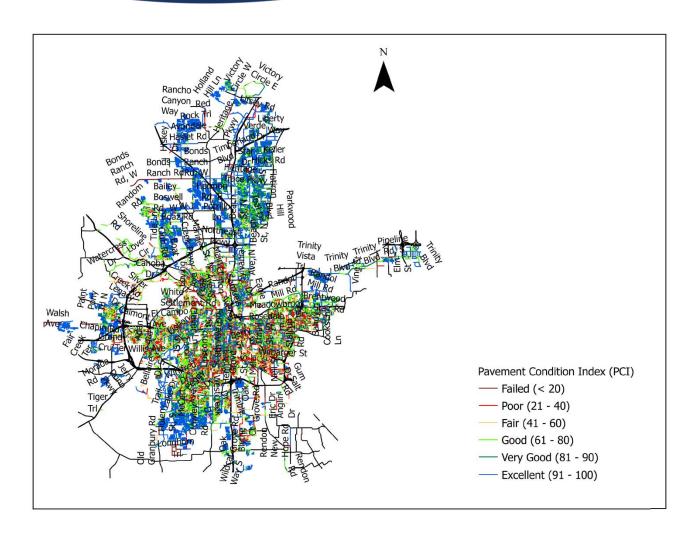
A Holistic Approach to Pavement Management: The Fort Worth Experience

Zelalem Arega, PhD, PE City of Fort Worth Pavement Management


August 22, 2024

Outline

- Pavement Statistics
- □ Pavement Management Approach
- Pavement Performance
 - Pavement Materials
 - Pavement Design
- □ Takeaways


Pavement Statistics

Pavement Type	Lane Miles	Network Percentage
Asphalt (including Surface Treated)	4,314	51.8%
Concrete (Including Composite)	3,998	48.0%
Brick	19	0.2%

Network Lane Mile

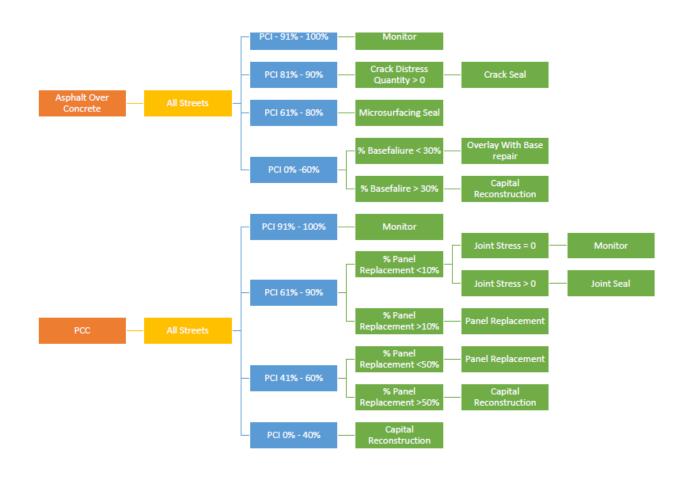
8,334

Pavement Statistics

Pavement Type	<u>PCI</u>
Asphalt Pavement (52%)	58
Concrete Pavement (48%)	87

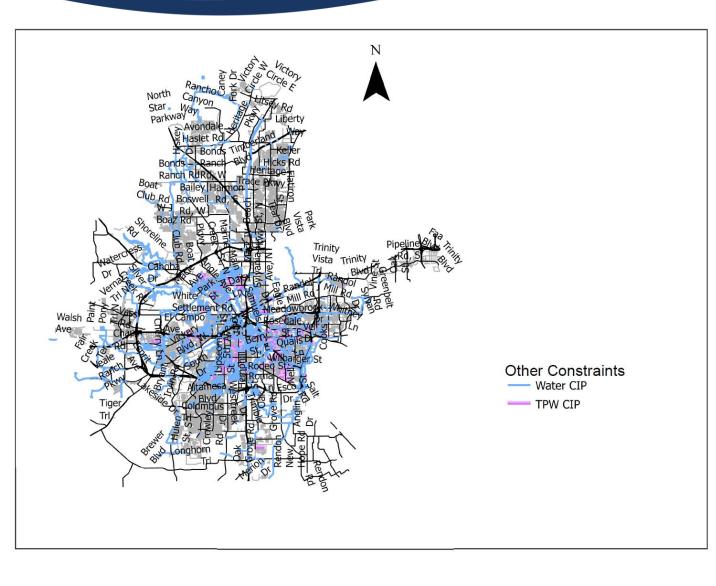
Street Classification	<u>PCI</u>	
Residential Streets	73	
Collector Streets	68	
Arterial Street	75	

Network Average PCI: 72



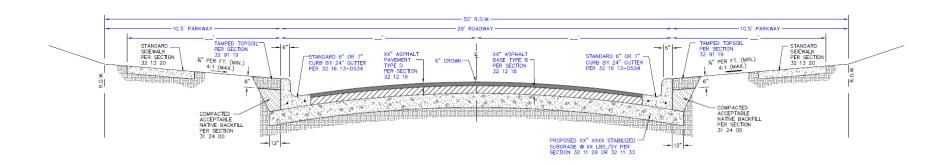
Pavement Management Approach

- □ Decision Tree
- ☐ Financial Constraint
- □ Other Constraints



Pavement Management Approach

- □ Decision Tree
- ☐ Financial Constraint
- □ Other Constraints


Pavement Management Approach

- ☐ Other Constraints
 - ✓ Water CIP Projects
 - ✓ TPW CIP Projects
 - ✓ Cast Iron Pipes

Pavement Performance

- ✓ Pavement Materials Revised asphalt paving spec to include superpave mixes
 - PG70-22 Superpave SP-D or Type D Surface mixes
 - PG64-22 Superpave SP-B or Type B Base mixes

Residential Asphalt Street Section

NOIE:

1. SIDEWALK SLOPE SHALL BE 1/4" PER FOOT (MAX) UNLESS DIRECTED OTHERWISE BY THE ENGINEER.

Pavement Performance

✓ Perform geotechnical tests to ensure quality, prevent premature failure, and make informed decisions on pavement treatment options

Pavement Performance

✓ Perform geotechnical tests to ensure quality, prevent failure, and make informed decisions in pavement treatment options

Pavement Coring

Thickness Measurement

Concrete Strength Test

Subgrade Soil Property Test

Core Existing pavement – to measure thickness of the asphalt/concrete pavement, measure compressive strength of concrete pavement, determine base/subgrade material properties

Pavement Design

✓ Working on developing a pavement design review and approval process

Concrete Pavement

Design E 18's: 933,149 (20 Years Design Life)

Initial Serviceability: 4.5
Terminal Serviceability: 2.25

Modulus of Rupture: 588 psi (4,000 psi concrete)

Elasticity Modulus: 3,932,000 psi

Effective k-value: 250 psi/in - for flex base

250 psi/in - for lime treated base

50 psi/in - for compacted subgrade

Reliability Level: 95% Standard Deviation: 0.39

Load Transfer J: 3.2 no edge support

2.7 with adequate edge support

Drainage Coefficient: 1.0

Pavement Design

✓ Working on developing a pavement design review and approval process

Recommended pavement section – Geotech report

Table 4.5-1 Pavement Thickness Summary						
Pavement Section		Street	Growth	Design Life	Design	
Thickness (in.)	Material	Classification	Factor	(Years)	ESAL	
10½	Portland Cement Concrete	Arterial				
8	Lime Stabilized Subgrade or Flexible Base					
2	HMAC Type D		2.5%	30	13,170,000	
11	HMAC Type B					
8	Lime Stabilized Subgrade or Flexible Base					

Takeaways

- ☐ Know the condition of your assets and perform the right treatment at the right time
- Construct long-lasting pavements
 - ✓ Update specifications to include better materials
 - Have an expert review and approve pavement designs
 - Perform geotechnical tests for better decisions on the treatment type

Thank You for Listening!

