

Project Update Meeting

Breakout Station 2: Optimization September 2024

Funded by the Texas General Land Office, Community Development Block Grant, Disaster Recovery Program.

Also Funded by the Texas Water Development Board and Texas Department of Transportation.

TSI Optimization Overview

- The optimization study aims to model ideal location and sizing for detention ponds and consider potential alternatives (e.g., GSI/NBS) to reduce downstream flows due to anticipated changes in imperviousness, using updated HEC-HMS models.
- The study considers input from the transportation (facilities at risk, vulnerable areas) and environmental (GSI/NBS, flood-prone areas) perspectives.
 - Specifically, the GSI and NBS suitability index helps to provide a foundation for where GSI/NBS can be proposed.

GSI/NBS Suitability Index (GIS Stacking Model)

Environmental

Topographical Elevation, Slope, Aspect, Curvature, TWI, TRI

Meteorological Rainfall intensity, Temperature

Land use/cover NDVI, Curve number, NRCS BMPs

Hydromorphological Distance from river, Stream density, Time of concentration

Socio-economical

Social vulnerability index, Population density

Infrastructural

Distance from transportation network, Distance from detention pond, Distance from USGS streamflow monitoring gauges

GSI/NBS Suitability Index (GIS Stacking Model)

AHP (Analytic Hierarchy Process) method

Fundamental scale for pairwise comparison in AHP.

The scale of relative importance	Definition
1	Equal importance
3	Moderate importance
5	Strong importance
7	Very strong importance
9	Extreme importance
2,4,6,8	Intermediate values

Pairwise comparison of flood causative parameters.

Parameter	SDP	FA	DD	PR	EL	SL	NDVI	LUC
SDP	1	1/3	1/3	1/3	1/4	1/3	2	1/3
FA	3	1	2	1/2	1/3	1/2	3	2
DD	3	1/2	1	1/2	1/3	1/2	3	2
PR	3	2	2	1	1/2	1/2	3	2
EL	4	3	3	2	1	2	5	4
SL	3	2	2	2	1/2	1	3	3
NDVI	1/2	1/3	1/3	1/3	1/5	1/3	1	1/3
LUC	3	1/2	1/2	1/2	1/4	1/3	3	1
Sum	20.5	9.666	11.166	7.166	3.366	5.499	23	14.666

SDP = Soil Drainage Profile, *FA* = Flow Accumulation, *DD* = Drainage Density, *PR* = Proximity to a river, *EL* = Elevation, *SL* = Slope, *NDVI* = Normalized Difference Vegetation Index, *LUC* = Land use/cover

Parameter weights for weighted sum analysis.

Parameter	Criteria Weight	Relative Weight (%)
Soil Drainage Profile	0.05	5
Flow Accumulation	0.12	12
Drainage Density	0.10	10
Proximity to a river	0.15	15
Elevation	0.28	28
Slope	0.18	18
Normalized Difference Vegetation Index	0.04	4
Land use/cover	0.08	8
Sum	1	100

Mathematical operation

Comparison

matrix

GSI/NBS Suitability Index (GIS Stacking Model)

TSI Optimization: Pilot Study Workflow

Obtain HEC-HMS models ("current conditions" and "future conditions") for all pilot study areas.

Compare results from the "current conditions" and "future conditions" HEC-HMS models to identify subbasins with significant changes in peak flow and/or volume.

Modify the "future conditions" basin model by creating *Reservoir* elements downstream of each subbasin with associated Storage-Discharge Curves.

Develop a library of Storage-Discharge Curves (1) for detention ponds by generating per-subbasin ideal curves based on frequency storm results and (2) for GSI/NBS (from AgriLife).

Develop a python script to automate HEC-HMS and optimize, minimizing the change in peak discharge and/or volume by applying multipliers to the Storage-Discharge Curves.

TSI Optimization: Pilot Study Methodology

Stormwater Infrastructure

TSI Optimization: Eagle Mountain HEC-HMS Model

No. of Subbasins : 41

No. of Reach : 42

Outlet (Sink): 1

Total Area: 75.17 sq mi.

Avg. Increase in Imperviousness: +24.89% (max: 46.88%) Avg. Decrease in Lag Time : -0.41 hrs (max: -0.67 hrs)

Without Inflow

Sink Discharge (2020): 40251.9 cfs

Sink Discharge (2070): 51143.3 cfs

10891 cfs increase

Theoretical Storage Required = 6210.63 acre-ft

TSI Optimization: Storage-Discharge Curve

TSI Optimization: Storage-Discharge Curve Multipliers

Storage values are multiplied with different multipliers while the discharge values are kept constant resulting in different variants of the original storage-discharge curves with different slopes.

TSI Optimization: Most Optimal Solution (1 Discharge Limit)

		Limiting Discharge
Junctions	Description	(cfs)
Sink	Outlet of the Basin	40251.9

integrating Transportation & Stormwater Infrastructure

Peak Discharge at Sink: 40187.56 cfs Total Storage: 4122.94 Acre ft

Reference

Sink Discharge (2020): 40251.9 cfs Sink Discharge (2070): 51143.3 cfs

Theoretical Storage Required = 6210.63 Acre-ft

TSI Optimization: Most Optimal Solution (5 Discharge Limits)

Junctions	Description	Limiting Discharge (cfs)
Blue_Cr_J60	Crosses SH114	11085.1
West_Fork_J120blw	Merges with Hog Branch	20648.3
West_Fork_J210	Merges with Darrett Creek	27049.7
West_Fork_J220	Merges with Briar Creek	38865.8
Sink	Outlet of the Basin	40251.9

Peak Discharge at Sink: 38742.5 cfs Total Storage: 5672.73 Acre ft

Reference

Sink Discharge (2020): 40251.9 cfs

Sink Discharge (2070): 51143.3 cfs

Theoretical Storage Required = 6210.63 Acre-ft

Today's Presenter

Nick Z. Fang, PhD, PE

Professor, *Robert S. Gooch Endowed Fellow* Fang Research Group Civil Engineering Department The University of Texas at Arlington 817.272.5334 NickFang@uta.edu

