Trinity Steering Committee

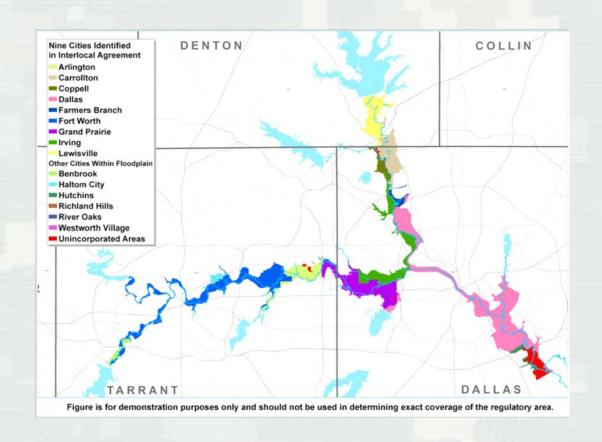
August 29, 2013

North Central Texas Council of Governments

Presentation Outline

- What is the CDC program
- Historical background
- CDC program goals
- Why update?
- Scope of the study
- Successes and challenges
- Findings
- Recommendations

Trinity River COMMON VISION


What is the program about and why is it important?

- **▶** Developed in the late 1980's
- **▶** Cooperative management effort among:
 - Local governments
 - NCTCOG
 - USACE
- **▶** Comprehensive, regional approach to address:
 - Flood damage reduction
 - Recreation
 - · Environmental quality

Participating Communities

NCTCOG TRINITY RIVER CORRIDOR INTERLOCAL AGREEMENT

est. 1989

NINE CITIES:

Arlington Carrollton

Dallas Farmers Branch

Grand Prairie Irving

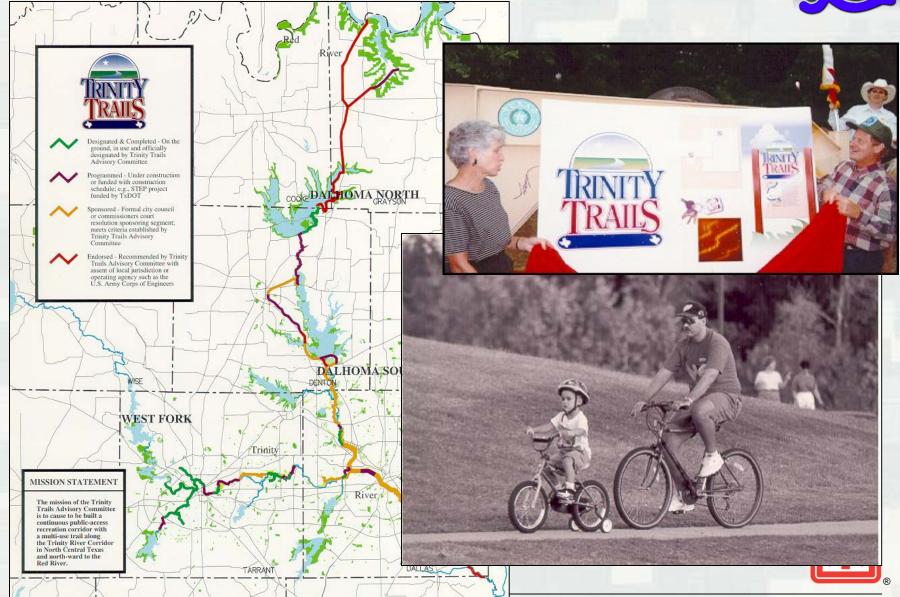
Coppell

Fort Worth

Lewisville

THREE COUNTIES:

Dallas Denton Tarrant


TWO SPECIAL DISTRICTS:

Tarrant Regional Water District

Trinity River Authority

Background Discussion

- Pre 1970's Dallas and Fort Worth Floodways constructed by USACE
- 1972 Clean Water Act involving USACE permits
- 1980's Cumulative impact of floodplain reclamation projects identified as a concern
- 1988 NEPA driven EIS & Record of Decision (ROD)
- 1988 Member cities and NCTCOG Steering Committee formed
- 1990 Upper Trinity River Basin Reconnaissance Report common permit strategy based on interest of the locals
- 1990 –Inter-local Agreements signed by member cities & Congress authorizes the Upper Trinity River Feasibility Study (UTRFS)
- Flood Management Task Force formed and CDC criteria developed based on ROD
- May 1991 1st Edition of the Corridor Development Certificate (CDC) Manual
- Approximately 100 projects permitted and four CDC manual updates since 1991

Historical Background - EIS & ROD

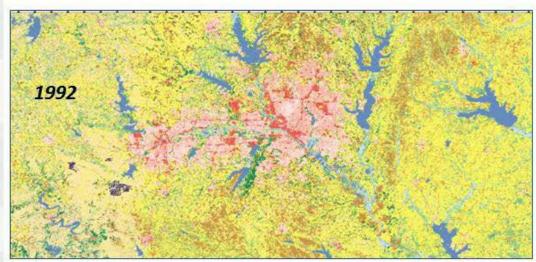
- Regional Environmental Impact Statement Trinity River and Tributaries (1988)
 - ► Cumulative impact of development is "Measurable and Significant"
 - ► Record of Decision (ROD) (1988)
 - Applied through 404 permit process
 - No rise in 100-yr water surface elevation
 - No rise in SPF water surface elevation
 - No loss of valley storage for 100 yr
 - Up to 5% loss of valley storage allowed for SPF

CDC Program Goals

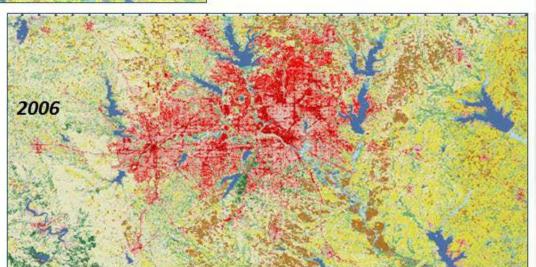
- Record of Decision is the foundation of CDC the program
- Limits (but does not eliminate) the impact of floodplain encroachments for regulated streams on downstream areas
- Establishes a consistent regional criteria
- Provides a funding stream for updates and state-of-the-art models and modeling tools
- Provides oversight for projects constructed in the 100 yr and SPF flood plains
- Allows development in the floodplain
- Applies to all encroachment projects, not just those requiring 404 permits
- Allows all FMTF members to review projects for the entire regulatory footprint
- Provides a consistent review process

ROD and CDC Limitations

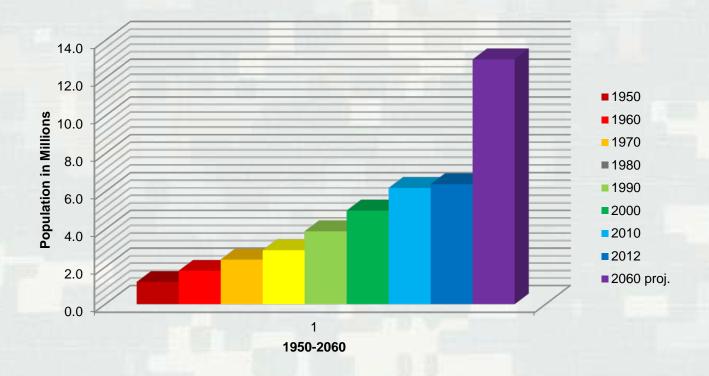
- Does not eliminate the impact of all upper basin floodplain development on downstream areas
 - ➤ Storage in the corridor must be the same at 100 yr and within 5% at SPF but can be redistributed which may or may not have an impact
- Does not preclude impact due to urbanization of the watershed (more efficient drainage and increase in impervious areas)
 - ► May or may not adversely impact DS areas



Why Update Now?

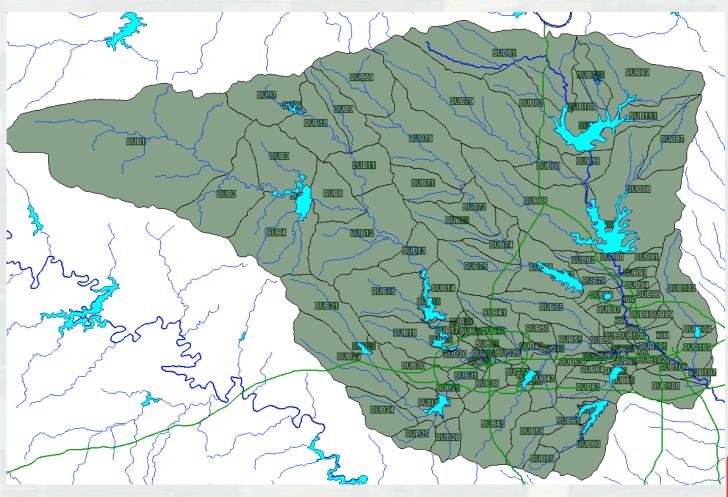

- Land use changes and higher growth rates than initially projected
 - ▶ In some areas, 2005 actual growth exceeded original 2040 projections
 - Development took place in different areas than projected
 - Urbanization impacts are significant (3.5 million to 6.5 million)
 - Impacted peak runoff rates for regulatory discharges
- Incorporate constructed and permitted projects (91) into the models
 - Evaluate impact of projects
 - ▶ Determine effectiveness of CDC program
 - Updated storage functions throughout river system
- Brought regulatory horizon from 2040 to 2055
- Brought existing conditions from 1992 to 2005
 - Sets the stage for a future FEMA update

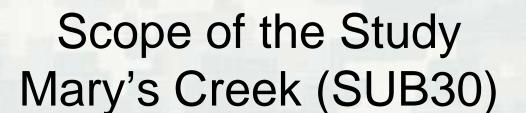
Urbanization of Dallas-Fort Worth

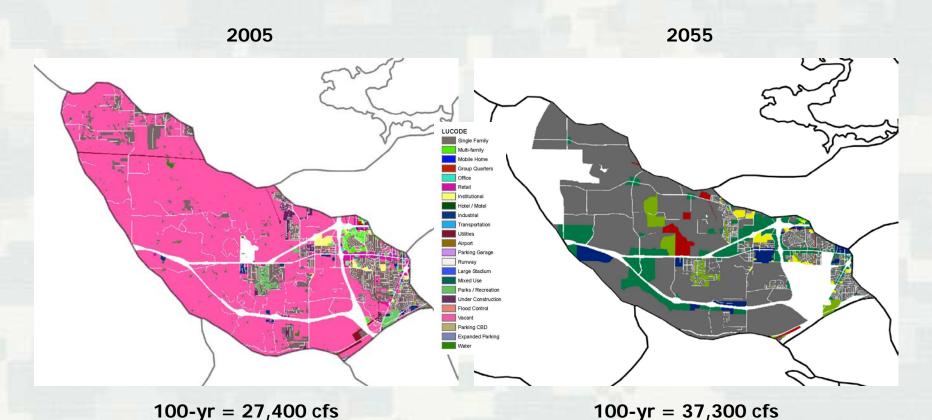


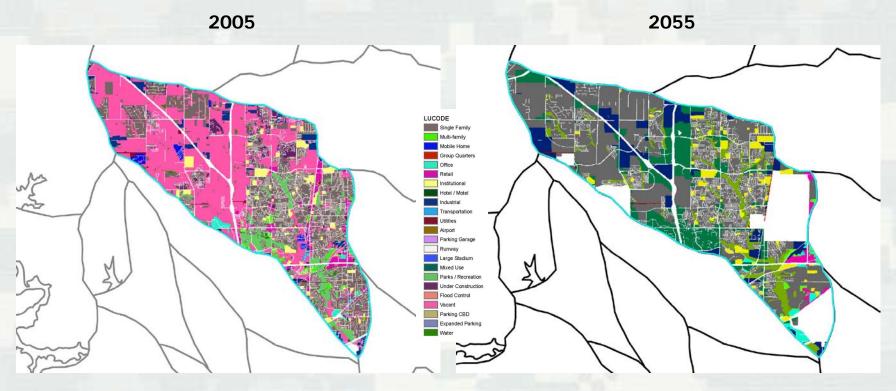
Comparison of Urbanization in DFW Metroplex 1992-2006 (Melinda Luna)

Population Growth and Watershed Development


Population			
(million)			
1.2			
1.8			
2.4			
2.9			
3.9			
5.0			
6.2			
6.4			
13.0			

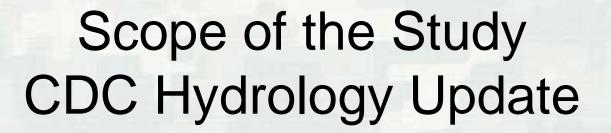



Scope of the Study Numerical Hydrology Model



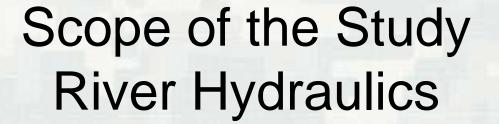
SPF = 68,200 cfs

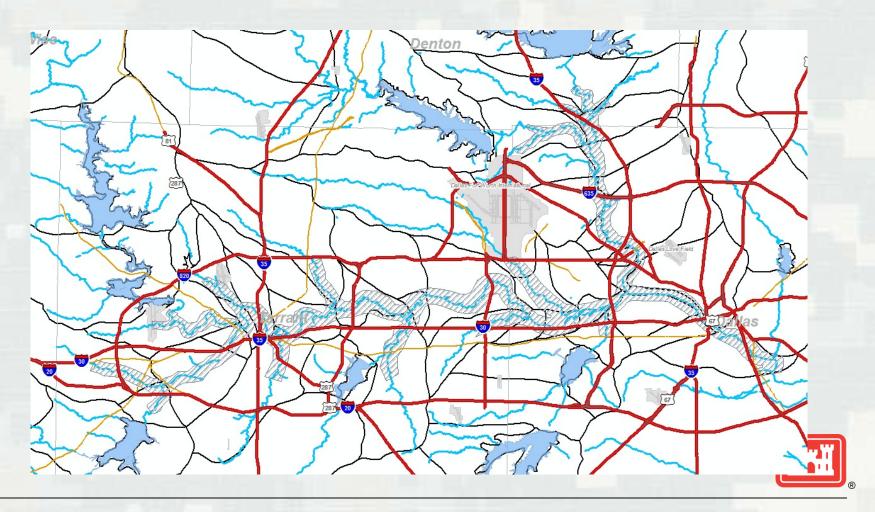
SPF = 88,800 cfs

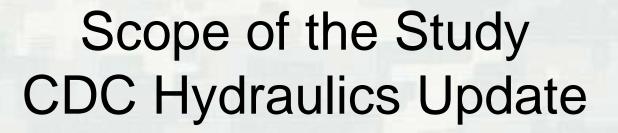

TRINITY RIVER COMMON VISION Safe, Clean, Enjoyable, Natural, Diverso

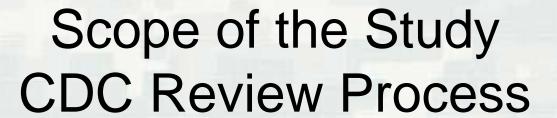
Scope of the Study Big Fossil Creek (SUB41)

100-yr = 32,200 cfsSPF = 44,400 cfs 100-yr = 37,200 cfsSPF = 50,000 cfs






- Numerical hydrology modeling
 - ▶ 110 sub-basins
 - ▶ 30 routing reaches
 - Updated valley storages for 80 constructed and planned projects
 - Conversion to the most up-to-date modeling technology (HEC-HMS)
 - ► Land use updates
 - New storm reproductions and calibrations
 - Verify model parameters and storages
 - Examination of statistical hydrology and other verification methods
 - Determination that statistical hydrology not useful for informing the results
 - Design storms



- Hydraulic modeling
 - ▶ 133 miles of river hydraulics
 - ► Incorporation of approx. 91 projects
 - Describe the impacts of constructed developments on WS elevations and storages
 - ► Approximately 600 new cross-sections
 - ▶ 1/3 of study area has new topographic data
 - ► Merge of storage and conveyance models
 - Conversion to the most up-to-date modeling technology (HEC-RAS)

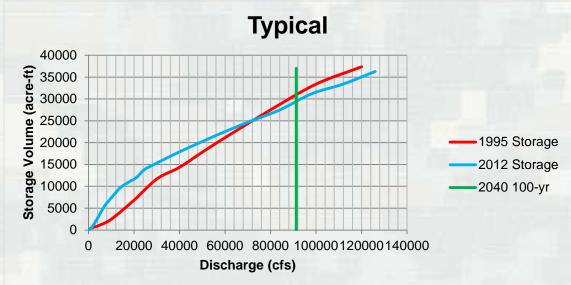
Reviews performed by:

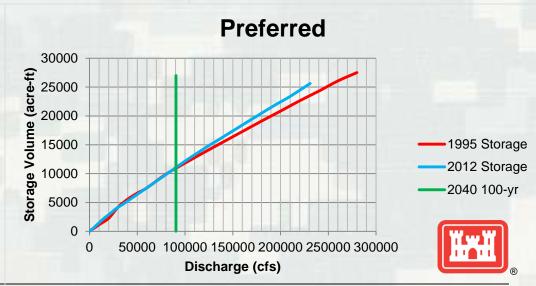
- Local USACE
- FMTF members
- Local consultants
- USACE vertical team
 - ► Hydrology Dr. David Williams, Ph.D., P.E.
 - ► Hydraulics Michael Gee, Ph.D., PE Hydrologic Engineering Center (HEC)

Successes and Challenges

Successes

- State-of-the-art modeling update
- ▶ Design storms more realistic representation of actual runoff and fringe areas
- Integration of new topographic data
- Integration of constructed and proposed projects (91)
- Reviews found techniques to be sound
- Modeling could serve as basis for future FEMA updates


Challenges


- Verification of model performance is limited due to the effect of climate shifts and urbanization on watershed conditions (USACE sponsored studies)
- Discharge and water surface increases due to upland development
- Some storage redistribution
- Split flow issue at Beltline Road
- Concern over impacts on Fort Worth and Dallas Levees

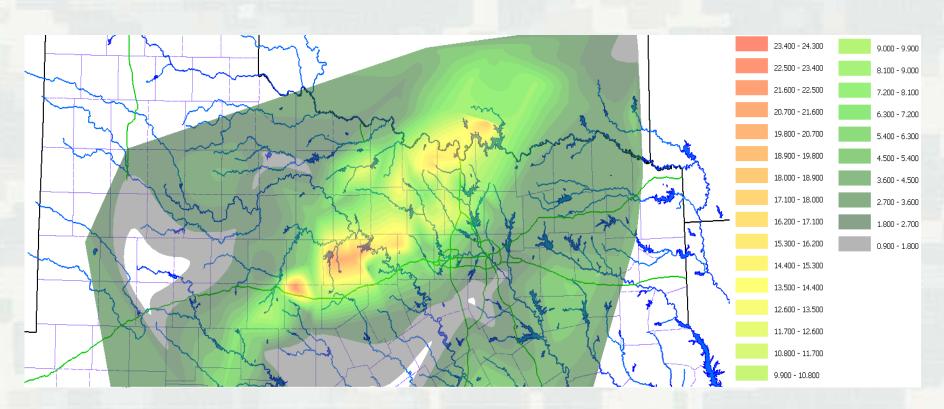
Storage Accountability

Findings 100-Year Discharge Comparison

Geographic Location	CDC Manual 4 th	2012 Revised CDC Model Comparison					
	Edition 2010	2005 vs 2040			2055 vs 2040		
	2040	2005	Δ (cfs)	Δ (%)	2055	∆ (cfs)	Δ (%)
Clear Fork							
Clear Fork above West Fork	32,600	36,600	4,000	12%	48,300	15,700	33%
West Fork							
West Fork above Clear Fork	35,400	35,400	0	0%	35,000	-400	-1%
West Fork below Clear Fork (at Fort Worth Gage)	48,700	56,500	7,800	16%	69,400	20,700	30%
West Fork at State Highway 360	91,300	95,400	4,100	4%	107,400	16,100	15%
West Fork above Elm Fork	92,200	95,800	3,600	4%	103,100	10,900	11%
Elm Fork							
Elm Fork at Sandy Lake Road (at Carrollton gage)	51,500	43,600	-7,900	-15%	48,200	-3,300	-7%
Elm Fork above West Fork	42,700	41,400	-1,300	-3%	44,700	2,000	4%
Trinity River Main Stem							
Trinity River below confluence with Elm Fork/West Fork	120,400	122,200	1,800	1%	129,400	9,000	7%
Trinity River at Dallas Gage (Commerce Street)	119,700	121,600	1,900	2%	128,600	8,900	7%

Findings 100-Year Elevations Comparison

	100-Ye	ar "Future"	Flood
Location	CDC Manual 4 th Edition 2040	CDC 2012 Update 2055	Diff. (ft)
Clear Fork			
University Drive	557.89	559.9	2.01
Henderson Street	539.15	541.8	2.65
West Fork			
SH 183	554.01	554.3	0.29
University Drive	540.81	543.1	2.29
SH 360	464.12	465.8	1.68
Belt Line Road	438.77	441.7	2.93
Loop 12	426.59	427.8	1.21
Elm Fork			
IH 35E	450.44	450	-0.44
Loop 12	426.73	427.8	1.07
SH 183	424.75	426	1.25
Trinity River Main Stem			
Commerce Street	416.83	417.9	1.07
Loop 12	403.22	403.7	0.48


Findings

- The CDC program has been very effective in limiting the impact of development within the regulatory footprint
- Uncontrolled development/encroachment within the regulated rivers would in most instances result in increased discharges and water surface elevations
- Population growth and watershed development have occurred more rapidly and in different areas than originally predicted
- Region has extreme flooding potential from tropical systems
- The CDC program does not limit the significant impact of loss of valley storage, as well as increased urbanization and impervious cover, in non-regulated portions of the watershed
 - Discharges and water surface elevations have increased as a result of development in upstream areas not regulated by the CDC program
 - ▶ Discharges increased up to 30%
 - Water surface elevations increased up to 3 feet
 - ▶ Lower reaches of major undeveloped tributaries and regulated rivers most at risk
- Without consistent regional storm water management practices throughout the basin, discharges and water surface elevations along the Trinity River will continue to increase as the region continues to grow
- Lack of hydrologic observations and techniques to support storm water management
- The region does not have consistent storm water management goals, policies and practices

Tropical Storm Norma 1981

Recommendations

- CDC program should be maintained
 - Very effective in limiting the impact of development within the regulatory footprint
 - Recommend adoption of this update
- Need for expanded storm water management
 - ▶ Regional storm water management practices that complement CDC valley storage preservation can be an important strategy to manage increased peak discharge rates due to urbanization
 - ► Consistent measurable goals, policies and practices
 - ► Limit risk from future development in unregulated areas

Questions or Comments?

